dhruv2842's picture
Update app.py
d6c8fb1 verified
raw
history blame
5.34 kB
from flask import Flask, request, jsonify, send_file
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision import transforms
import os
import numpy as np
from datetime import datetime
import sqlite3
import torch.nn as nn
import torchvision.models as models
app = Flask(__name__)
# βœ… Directory and database path
OUTPUT_DIR = '/tmp/results'
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
DB_PATH = os.path.join(OUTPUT_DIR, 'results.db')
def init_db():
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS results (
id INTEGER PRIMARY KEY AUTOINCREMENT,
image_filename TEXT,
prediction TEXT,
confidence REAL,
gradcam_filename TEXT,
timestamp TEXT
)
""")
conn.commit()
conn.close()
init_db()
model = models.densenet169(pretrained=False)
model.classifier = nn.Linear(model.classifier.in_features, 3)
# 2️⃣ Load checkpoint
checkpoint = torch.load('densenet169_seed40_best.pt', map_location='cpu')
# βœ… If checkpoint contains state_dict directly
# model.load_state_dict(checkpoint)
# βœ… If checkpoint contains a dict
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
# βœ… Preprocess Image
transform = transforms.Compose([
transforms.Resize((224, 224)), # Adjust if needed
transforms.ToTensor()
])
# βœ… Class Names
CLASS_NAMES = ["Normal", "Early Glaucoma", "Advanced Glaucoma"]
@app.route('/')
def home():
return "Glaucoma Detection Flask API (3-Class Model) is running!"
@app.route("/test_file")
def test_file():
"""Check if the .pt model file is present and readable."""
filepath = "densenet169_seed40_best.pt"
if os.path.exists(filepath):
return f"βœ… Model file found at: {filepath}"
else:
return "❌ Model file NOT found."
@app.route('/predict', methods=['POST'])
def predict():
"""Perform prediction using PyTorch (3-class), save results, and save to SQLite database."""
if 'file' not in request.files:
return jsonify({'error': 'No file uploaded'}), 400
uploaded_file = request.files['file']
if uploaded_file.filename == '':
return jsonify({'error': 'No file selected'}), 400
try:
# βœ… Save the uploaded image
timestamp = int(datetime.now().timestamp())
uploaded_filename = f"uploaded_{timestamp}.png"
uploaded_file_path = os.path.join(OUTPUT_DIR, uploaded_filename)
uploaded_file.save(uploaded_file_path)
# βœ… Perform prediction
img = Image.open(uploaded_file_path).convert('RGB')
input_tensor = transform(img).unsqueeze(0)
with torch.no_grad():
output = model(input_tensor)
probabilities = F.softmax(output, dim=1).cpu().numpy()[0]
# βœ… Get result
class_index = np.argmax(probabilities)
result = CLASS_NAMES[class_index]
confidence = float(probabilities[class_index])
# βœ… Save results to SQLite
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("""
INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, timestamp)
VALUES (?, ?, ?, ?, ?)
""", (uploaded_filename, result, confidence, '', datetime.now().isoformat()))
conn.commit()
conn.close()
return jsonify({
'prediction': result,
'confidence': confidence,
'normal_probability': float(probabilities[0]),
'early_glaucoma_probability': float(probabilities[1]),
'advanced_glaucoma_probability': float(probabilities[2]),
'gradcam_image': '', # Not used for now
'image_filename': uploaded_filename
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/results', methods=['GET'])
def results():
"""List all results from the SQLite database."""
conn = sqlite3.connect(DB_PATH)
cursor = conn.cursor()
cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
results_data = cursor.fetchall()
conn.close()
results_list = []
for record in results_data:
results_list.append({
'id': record[0],
'image_filename': record[1],
'prediction': record[2],
'confidence': record[3],
'gradcam_filename': record[4],
'timestamp': record[5]
})
return jsonify(results_list)
@app.route('/gradcam/<filename>')
def get_gradcam(filename):
"""Serve the Grad-CAM overlay image (no-op for now)."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found'}), 404
@app.route('/image/<filename>')
def get_image(filename):
"""Serve the original uploaded image."""
filepath = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(filepath):
return send_file(filepath, mimetype='image/png')
else:
return jsonify({'error': 'File not found'}), 404
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)