Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,19 +5,21 @@ import numpy as np
|
|
5 |
import os
|
6 |
import cv2
|
7 |
import tensorflow as tf
|
8 |
-
import firebase_admin
|
9 |
-
from firebase_admin import credentials, db
|
10 |
from datetime import datetime
|
|
|
|
|
11 |
|
12 |
app = Flask(__name__)
|
13 |
|
14 |
-
# β
1.
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
# β
2. Load
|
21 |
model = load_model('mobilenet_glaucoma_model.h5', compile=False)
|
22 |
|
23 |
# β
3. Preprocess Image
|
@@ -39,8 +41,8 @@ def make_gradcam(img_array, model, last_conv_layer_name='Conv_1_bn'):
|
|
39 |
grads = tape.gradient(loss, conv_outputs)
|
40 |
|
41 |
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
42 |
-
conv_outputs = conv_outputs[0].numpy()
|
43 |
-
pooled_grads = pooled_grads.numpy()
|
44 |
|
45 |
for i in range(conv_outputs.shape[-1]):
|
46 |
conv_outputs[..., i] *= pooled_grads[i]
|
@@ -75,16 +77,16 @@ def home():
|
|
75 |
|
76 |
@app.route("/test_file")
|
77 |
def test_file():
|
78 |
-
"""Check if the
|
79 |
-
filepath = "
|
80 |
if os.path.exists(filepath):
|
81 |
-
return f"β
|
82 |
else:
|
83 |
-
return "β
|
84 |
|
85 |
@app.route('/predict', methods=['POST'])
|
86 |
def predict():
|
87 |
-
"""Perform prediction and save results to
|
88 |
if 'file' not in request.files:
|
89 |
return jsonify({'error': 'No file uploaded'}), 400
|
90 |
|
@@ -107,14 +109,16 @@ def predict():
|
|
107 |
gradcam_filename = f"gradcam_{int(datetime.now().timestamp())}.png"
|
108 |
save_gradcam_image(img, heatmap, filename=gradcam_filename)
|
109 |
|
110 |
-
# Save to
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
118 |
|
119 |
return jsonify({
|
120 |
'prediction': result,
|
@@ -129,11 +133,26 @@ def predict():
|
|
129 |
|
130 |
@app.route('/results', methods=['GET'])
|
131 |
def results():
|
132 |
-
"""List all results from the
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
@app.route('/gradcam/<filename>')
|
139 |
def get_gradcam(filename):
|
|
|
5 |
import os
|
6 |
import cv2
|
7 |
import tensorflow as tf
|
|
|
|
|
8 |
from datetime import datetime
|
9 |
+
import psycopg2
|
10 |
+
from psycopg2.extras import DictCursor
|
11 |
|
12 |
app = Flask(__name__)
|
13 |
|
14 |
+
# β
1. Connect to PostgreSQL (Supabase)
|
15 |
+
POSTGRES_URL = "postgresql://postgres.otihqjwfqjwccsipzroy:Dhruvagr%40123@aws-0-us-east-2.pooler.supabase.com:5432/postgres"
|
16 |
|
17 |
+
def get_db_connection():
|
18 |
+
"""Get a new database connection."""
|
19 |
+
conn = psycopg2.connect(POSTGRES_URL)
|
20 |
+
return conn
|
21 |
|
22 |
+
# β
2. Load Model
|
23 |
model = load_model('mobilenet_glaucoma_model.h5', compile=False)
|
24 |
|
25 |
# β
3. Preprocess Image
|
|
|
41 |
grads = tape.gradient(loss, conv_outputs)
|
42 |
|
43 |
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
44 |
+
conv_outputs = conv_outputs[0].numpy()
|
45 |
+
pooled_grads = pooled_grads.numpy()
|
46 |
|
47 |
for i in range(conv_outputs.shape[-1]):
|
48 |
conv_outputs[..., i] *= pooled_grads[i]
|
|
|
77 |
|
78 |
@app.route("/test_file")
|
79 |
def test_file():
|
80 |
+
"""Check if the model file is present and readable."""
|
81 |
+
filepath = "mobilenet_glaucoma_model.h5"
|
82 |
if os.path.exists(filepath):
|
83 |
+
return f"β
Model file found at: {filepath}"
|
84 |
else:
|
85 |
+
return "β Model file NOT found."
|
86 |
|
87 |
@app.route('/predict', methods=['POST'])
|
88 |
def predict():
|
89 |
+
"""Perform prediction and save results to PostgreSQL (Supabase)."""
|
90 |
if 'file' not in request.files:
|
91 |
return jsonify({'error': 'No file uploaded'}), 400
|
92 |
|
|
|
109 |
gradcam_filename = f"gradcam_{int(datetime.now().timestamp())}.png"
|
110 |
save_gradcam_image(img, heatmap, filename=gradcam_filename)
|
111 |
|
112 |
+
# Save results to PostgreSQL
|
113 |
+
conn = get_db_connection()
|
114 |
+
cursor = conn.cursor()
|
115 |
+
cursor.execute("""
|
116 |
+
INSERT INTO results (image_filename, prediction, confidence, gradcam_filename, timestamp)
|
117 |
+
VALUES (%s, %s, %s, %s, %s)
|
118 |
+
""", (file.filename, result, confidence, gradcam_filename, datetime.now().isoformat()))
|
119 |
+
conn.commit()
|
120 |
+
cursor.close()
|
121 |
+
conn.close()
|
122 |
|
123 |
return jsonify({
|
124 |
'prediction': result,
|
|
|
133 |
|
134 |
@app.route('/results', methods=['GET'])
|
135 |
def results():
|
136 |
+
"""List all results from the PostgreSQL database."""
|
137 |
+
conn = get_db_connection()
|
138 |
+
cursor = conn.cursor(cursor_factory=DictCursor)
|
139 |
+
cursor.execute("SELECT * FROM results ORDER BY timestamp DESC")
|
140 |
+
results_data = cursor.fetchall()
|
141 |
+
cursor.close()
|
142 |
+
conn.close()
|
143 |
+
|
144 |
+
results_list = []
|
145 |
+
for record in results_data:
|
146 |
+
results_list.append({
|
147 |
+
'id': record['id'], # Assumes 'id' is your primary key column
|
148 |
+
'image_filename': record['image_filename'],
|
149 |
+
'prediction': record['prediction'],
|
150 |
+
'confidence': record['confidence'],
|
151 |
+
'gradcam_filename': record['gradcam_filename'],
|
152 |
+
'timestamp': record['timestamp']
|
153 |
+
})
|
154 |
+
|
155 |
+
return jsonify(results_list)
|
156 |
|
157 |
@app.route('/gradcam/<filename>')
|
158 |
def get_gradcam(filename):
|