dhruv2842 commited on
Commit
81d84c1
Β·
verified Β·
1 Parent(s): 54be91e

Upload 4 files

Browse files
app.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify, send_file
2
+ from tensorflow.keras.models import load_model, Model
3
+ from PIL import Image
4
+ import numpy as np
5
+ import os
6
+ import cv2
7
+ import tensorflow as tf
8
+ import firebase_admin
9
+ from firebase_admin import credentials, db
10
+ from datetime import datetime
11
+
12
+ app = Flask(__name__)
13
+
14
+ # βœ… 1. Initialize Firebase
15
+ cred = credentials.Certificate("glaucoma-4b682-firebase-adminsdk-fbsvc-cd31fbe99d.json") # Path to your service account JSON
16
+ firebase_admin.initialize_app(cred, {
17
+ 'databaseURL': 'https://glaucoma-4b682-default-rtdb.firebaseio.com/'
18
+ })
19
+ results_ref = db.reference('results') # Will save results here
20
+
21
+ # βœ… 2. Load the Model
22
+ model = load_model('mobilenet_glaucoma_model.h5', compile=False)
23
+
24
+ # βœ… 3. Preprocess Image
25
+ def preprocess_image(img):
26
+ img = img.resize((224, 224))
27
+ img = np.array(img) / 255.0
28
+ img = np.expand_dims(img, axis=0)
29
+ return img
30
+
31
+ # βœ… 4. Grad-CAM Generation
32
+ def make_gradcam(img_array, model, last_conv_layer_name='Conv2D_1'):
33
+ """Generate Grad-CAM for the given image and model."""
34
+ last_conv_layer = model.get_layer(last_conv_layer_name)
35
+ grad_model = Model(inputs=model.inputs, outputs=[last_conv_layer.output, model.output])
36
+
37
+ with tf.GradientTape() as tape:
38
+ conv_outputs, predictions = grad_model(img_array)
39
+ loss = predictions[:, 0]
40
+ grads = tape.gradient(loss, conv_outputs)
41
+
42
+ pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
43
+ conv_outputs = conv_outputs[0]
44
+
45
+ for i in range(conv_outputs.shape[-1]):
46
+ conv_outputs[..., i] *= pooled_grads[i]
47
+
48
+ heatmap = tf.reduce_mean(conv_outputs, axis=-1).numpy()
49
+ heatmap = np.maximum(heatmap, 0)
50
+ heatmap /= np.max(heatmap)
51
+
52
+ return heatmap
53
+
54
+ # βœ… 5. Save Grad-CAM Overlay
55
+ def save_gradcam_image(original_img, heatmap, filename='gradcam.png', output_dir='results'):
56
+ """Save the Grad-CAM overlay image and return its path."""
57
+ if not os.path.exists(output_dir):
58
+ os.makedirs(output_dir)
59
+
60
+ img = np.array(original_img.resize((224, 224)))
61
+ heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
62
+ heatmap = np.uint8(255 * heatmap)
63
+
64
+ heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
65
+ overlay = cv2.addWeighted(img, 0.6, heatmap, 0.4, 0)
66
+
67
+ filepath = os.path.join(output_dir, filename)
68
+ cv2.imwrite(filepath, overlay)
69
+
70
+ return filepath
71
+
72
+ @app.route('/')
73
+ def home():
74
+ return "Glaucoma Detection Flask API is running!"
75
+
76
+ @app.route('/predict', methods=['POST'])
77
+ def predict():
78
+ """Perform prediction and save results to Firebase."""
79
+ if 'file' not in request.files:
80
+ return jsonify({'error': 'No file uploaded'}), 400
81
+
82
+ file = request.files['file']
83
+ if file.filename == '':
84
+ return jsonify({'error': 'No file selected'}), 400
85
+
86
+ try:
87
+ img = Image.open(file.stream).convert('RGB')
88
+ img_array = preprocess_image(img)
89
+
90
+ prediction = model.predict(img_array)[0]
91
+ glaucoma_prob = 1 - prediction[0]
92
+ normal_prob = prediction[0]
93
+ result = 'Glaucoma' if glaucoma_prob > normal_prob else 'Normal'
94
+ confidence = float(glaucoma_prob) if result == 'Glaucoma' else float(normal_prob)
95
+
96
+ # Grad-CAM
97
+ heatmap = make_gradcam(img_array, model, last_conv_layer_name='Conv2D_1')
98
+ gradcam_filename = f"gradcam_{int(datetime.now().timestamp())}.png"
99
+ save_gradcam_image(img, heatmap, filename=gradcam_filename)
100
+
101
+ # Save to Firebase
102
+ results_ref.push({
103
+ 'image_filename': file.filename,
104
+ 'prediction': result,
105
+ 'confidence': confidence,
106
+ 'gradcam_filename': gradcam_filename,
107
+ 'timestamp': datetime.now().isoformat()
108
+ })
109
+
110
+ return jsonify({
111
+ 'prediction': result,
112
+ 'confidence': confidence,
113
+ 'normal_probability': float(normal_prob),
114
+ 'glaucoma_probability': float(glaucoma_prob),
115
+ 'gradcam_image': gradcam_filename
116
+ })
117
+
118
+ except Exception as e:
119
+ return jsonify({'error': str(e)}), 500
120
+
121
+ @app.route('/results', methods=['GET'])
122
+ def results():
123
+ """List all results from the Firebase database."""
124
+ results_data = results_ref.get()
125
+ if not results_data:
126
+ results_data = []
127
+ return jsonify(results_data)
128
+
129
+ @app.route('/gradcam/<filename>')
130
+ def get_gradcam(filename):
131
+ """Serve the Grad-CAM overlay image."""
132
+ filepath = os.path.join('results', filename)
133
+ if os.path.exists(filepath):
134
+ return send_file(filepath, mimetype='image/png')
135
+ else:
136
+ return jsonify({'error': 'File not found'}), 404
137
+
138
+ if __name__ == '__main__':
139
+ app.run(host='0.0.0.0', port=7860)
glaucoma-4b682-firebase-adminsdk-fbsvc-cd31fbe99d.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "type": "service_account",
3
+ "project_id": "glaucoma-4b682",
4
+ "private_key_id": "cd31fbe99d9bfcd83a0f9435df4b10351a2d02d1",
5
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDPm5oqN+BOcDWm\nW4/bG77rXioI3OmKUm54vHtad8eGD/2id2zmWs6UVvvWpPH/NetKdDLaFH8hlLmT\nir/F6/zWKXtiL4hwFW/BKzW9PO4MeVvUgV/Wf0DuY+hskA9xKUYUkfi2asKd3Jrx\neMK4fHbqb4qrHRNZ3yl9P4n861ykxCuMg/5KG1etKqJeQuOSrknSAid+aC1Pg5px\nyelyXMC0moGpkdmXRSBsQV5euAOm7sU1vdpYowsw8LjcqsV7L3s8F64gxFo0usqx\no1RK4l3//CIsFP9X4hIyPBkbwgjLKGTRy/omxAWYLk0gEIoLunnBPGPaSQUGqtv6\nICz6taFvAgMBAAECggEABeAkf19iITYscE8xhaFpgUlX9FFe6HWZcTynBfWowgvG\n6/loLbU84CTEvWnZ3+pn9nCx470J4A40RI98JxDV8LBg9+Voto7qFnB2vMccyLcm\nHIOmKmJ4Q2p7xdCRC8JG8gbByuNqZC52tXfrW8O65ddragrJZRUwxtpXY/fYZJnE\n88UV+KGiIciV1O/LP4Fi2C7CgY68KS5MjUtxVugYXRniJJMua+koer+u57xMkrca\nbiMbGuNqL2pSJABplm59fuFD68n6F5omHAFUWBceavPAn57e8LC/Gg6W+8W3K3hN\nUc7YeW6LdVzExu3xwfOegb0NlRU1NX3n6lZKD6bEsQKBgQD2I97DKCQBe89lckGi\nQYFjmnkEnMKnNALMQhD3b+CdctsIIbKl22tV0vOdWA4abvRNWcM5+wYXU/qgJ0lY\npnAm19YpgmRwbQ7gisrt16JVmUyjXqb2rOTsm5m5azLN/idW8Zj4L6a0LUsrjni2\n52KZaYIJifv+c5LCxcoG0sto1wKBgQDX7JbSB5jiu8z9jyMbOkyE9KZRMpn79YeX\nDI7qHA0N2gdZuPKWRMu8aShaELIeelHQ5XGhFlZeApY3nJFQZ5t4JklSHEey93h0\n+wQ2WGUHfIvSUMoEX4TOGCQzaU4XYVfeTetR6xqeZovppnEw7z6tgFI1lMIPBSFh\nuXQTVO8BKQKBgHxtga0SW7FMT3mvGrLVfn1Fl6vXOyefSVLMixsquVeeuk8QCemC\nVG5cZ77AxtBiCqoXmHN1DI06bNYNRizEZqmcLq1pNzEGUKD+SLuXaH7xMibcMHc+\ny7M4ratoH5S2yFhRZc0A+brXsspgCXIc4mE/TvdXg8YL0sMXjZuJcD6dAoGBALPn\nP9JG2i8vYiBxPkLVVCQC4wAMNRgk/o/vurN8I7RC0JUE77ocH9QfmatQ9ddG+xwd\nz4rz3Yn+hcJYBQsFCBgXbkenoGWQoyB0dJIDHEocjzLwdSEnpLNCkgbz2kjIpjlm\nmoZqaIdJ0ZEfSHgJHiPZIqXaB8YT9DhEGF5zCZ/hAoGBAJ9+xxNHL9KZoo2hp5hZ\n138oB6k/s96iND3Ehts7X8ymkqekZuKtFlLfTYaU+08b8pIM5wxTslM10NN9gWNX\nmvlsqWhdFvDVnPft7yhSzyHYmzEKmA4CWNV6LnLELiqTrdwijL8lGP4mH1Zs1Lrx\n1/78P6aIjhVuvqLmgP4wXO/q\n-----END PRIVATE KEY-----\n",
6
+ "client_email": "[email protected]",
7
+ "client_id": "107453183192663273755",
8
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
9
+ "token_uri": "https://oauth2.googleapis.com/token",
10
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
11
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/firebase-adminsdk-fbsvc%40glaucoma-4b682.iam.gserviceaccount.com",
12
+ "universe_domain": "googleapis.com"
13
+ }
mobilenet_glaucoma_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:678846bf6ca5c8d457c7ab2fb173c250394896bdf0d19214cb2e58ef485de9f7
3
+ size 9587048
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Flask
2
+ tensorflow
3
+ pillow
4
+ numpy