dhruv2842 commited on
Commit
ac9f500
Β·
verified Β·
1 Parent(s): 2035e51

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +148 -139
app.py CHANGED
@@ -1,139 +1,148 @@
1
- from flask import Flask, request, jsonify, send_file
2
- from tensorflow.keras.models import load_model, Model
3
- from PIL import Image
4
- import numpy as np
5
- import os
6
- import cv2
7
- import tensorflow as tf
8
- import firebase_admin
9
- from firebase_admin import credentials, db
10
- from datetime import datetime
11
-
12
- app = Flask(__name__)
13
-
14
- # βœ… 1. Initialize Firebase
15
- cred = credentials.Certificate("glaucoma-4b682-firebase-adminsdk-fbsvc-cd31fbe99d.json") # Path to your service account JSON
16
- firebase_admin.initialize_app(cred, {
17
- 'databaseURL': 'https://glaucoma-4b682-default-rtdb.firebaseio.com/'
18
- })
19
- results_ref = db.reference('results') # Will save results here
20
-
21
- # βœ… 2. Load the Model
22
- model = load_model('mobilenet_glaucoma_model.h5', compile=False)
23
-
24
- # βœ… 3. Preprocess Image
25
- def preprocess_image(img):
26
- img = img.resize((224, 224))
27
- img = np.array(img) / 255.0
28
- img = np.expand_dims(img, axis=0)
29
- return img
30
-
31
- # βœ… 4. Grad-CAM Generation
32
- def make_gradcam(img_array, model, last_conv_layer_name='Conv2D_1'):
33
- """Generate Grad-CAM for the given image and model."""
34
- last_conv_layer = model.get_layer(last_conv_layer_name)
35
- grad_model = Model(inputs=model.inputs, outputs=[last_conv_layer.output, model.output])
36
-
37
- with tf.GradientTape() as tape:
38
- conv_outputs, predictions = grad_model(img_array)
39
- loss = predictions[:, 0]
40
- grads = tape.gradient(loss, conv_outputs)
41
-
42
- pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
43
- conv_outputs = conv_outputs[0]
44
-
45
- for i in range(conv_outputs.shape[-1]):
46
- conv_outputs[..., i] *= pooled_grads[i]
47
-
48
- heatmap = tf.reduce_mean(conv_outputs, axis=-1).numpy()
49
- heatmap = np.maximum(heatmap, 0)
50
- heatmap /= np.max(heatmap)
51
-
52
- return heatmap
53
-
54
- # βœ… 5. Save Grad-CAM Overlay
55
- def save_gradcam_image(original_img, heatmap, filename='gradcam.png', output_dir='results'):
56
- """Save the Grad-CAM overlay image and return its path."""
57
- if not os.path.exists(output_dir):
58
- os.makedirs(output_dir)
59
-
60
- img = np.array(original_img.resize((224, 224)))
61
- heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
62
- heatmap = np.uint8(255 * heatmap)
63
-
64
- heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
65
- overlay = cv2.addWeighted(img, 0.6, heatmap, 0.4, 0)
66
-
67
- filepath = os.path.join(output_dir, filename)
68
- cv2.imwrite(filepath, overlay)
69
-
70
- return filepath
71
-
72
- @app.route('/')
73
- def home():
74
- return "Glaucoma Detection Flask API is running!"
75
-
76
- @app.route('/predict', methods=['POST'])
77
- def predict():
78
- """Perform prediction and save results to Firebase."""
79
- if 'file' not in request.files:
80
- return jsonify({'error': 'No file uploaded'}), 400
81
-
82
- file = request.files['file']
83
- if file.filename == '':
84
- return jsonify({'error': 'No file selected'}), 400
85
-
86
- try:
87
- img = Image.open(file.stream).convert('RGB')
88
- img_array = preprocess_image(img)
89
-
90
- prediction = model.predict(img_array)[0]
91
- glaucoma_prob = 1 - prediction[0]
92
- normal_prob = prediction[0]
93
- result = 'Glaucoma' if glaucoma_prob > normal_prob else 'Normal'
94
- confidence = float(glaucoma_prob) if result == 'Glaucoma' else float(normal_prob)
95
-
96
- # Grad-CAM
97
- heatmap = make_gradcam(img_array, model, last_conv_layer_name='Conv2D_1')
98
- gradcam_filename = f"gradcam_{int(datetime.now().timestamp())}.png"
99
- save_gradcam_image(img, heatmap, filename=gradcam_filename)
100
-
101
- # Save to Firebase
102
- results_ref.push({
103
- 'image_filename': file.filename,
104
- 'prediction': result,
105
- 'confidence': confidence,
106
- 'gradcam_filename': gradcam_filename,
107
- 'timestamp': datetime.now().isoformat()
108
- })
109
-
110
- return jsonify({
111
- 'prediction': result,
112
- 'confidence': confidence,
113
- 'normal_probability': float(normal_prob),
114
- 'glaucoma_probability': float(glaucoma_prob),
115
- 'gradcam_image': gradcam_filename
116
- })
117
-
118
- except Exception as e:
119
- return jsonify({'error': str(e)}), 500
120
-
121
- @app.route('/results', methods=['GET'])
122
- def results():
123
- """List all results from the Firebase database."""
124
- results_data = results_ref.get()
125
- if not results_data:
126
- results_data = []
127
- return jsonify(results_data)
128
-
129
- @app.route('/gradcam/<filename>')
130
- def get_gradcam(filename):
131
- """Serve the Grad-CAM overlay image."""
132
- filepath = os.path.join('results', filename)
133
- if os.path.exists(filepath):
134
- return send_file(filepath, mimetype='image/png')
135
- else:
136
- return jsonify({'error': 'File not found'}), 404
137
-
138
- if __name__ == '__main__':
139
- app.run(host='0.0.0.0', port=7860)
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify, send_file
2
+ from tensorflow.keras.models import load_model, Model
3
+ from PIL import Image
4
+ import numpy as np
5
+ import os
6
+ import cv2
7
+ import tensorflow as tf
8
+ import firebase_admin
9
+ from firebase_admin import credentials, db
10
+ from datetime import datetime
11
+
12
+ app = Flask(__name__)
13
+
14
+ # βœ… 1. Initialize Firebase
15
+ cred = credentials.Certificate("glaucoma-4b682-firebase-adminsdk-fbsvc-cd31fbe99d.json") # Path to your service account JSON
16
+ firebase_admin.initialize_app(cred, {
17
+ 'databaseURL': 'https://glaucoma-4b682-default-rtdb.firebaseio.com/'
18
+ })
19
+ results_ref = db.reference('results') # Will save results here
20
+
21
+ # βœ… 2. Load the Model
22
+ model = load_model('mobilenet_glaucoma_model.h5', compile=False)
23
+
24
+ # βœ… 3. Preprocess Image
25
+ def preprocess_image(img):
26
+ img = img.resize((224, 224))
27
+ img = np.array(img) / 255.0
28
+ img = np.expand_dims(img, axis=0)
29
+ return img
30
+
31
+ # βœ… 4. Grad-CAM Generation
32
+ def make_gradcam(img_array, model, last_conv_layer_name='Conv2D_1'):
33
+ """Generate Grad-CAM for the given image and model."""
34
+ last_conv_layer = model.get_layer(last_conv_layer_name)
35
+ grad_model = Model(inputs=model.inputs, outputs=[last_conv_layer.output, model.output])
36
+
37
+ with tf.GradientTape() as tape:
38
+ conv_outputs, predictions = grad_model(img_array)
39
+ loss = predictions[:, 0]
40
+ grads = tape.gradient(loss, conv_outputs)
41
+
42
+ pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
43
+ conv_outputs = conv_outputs[0]
44
+
45
+ for i in range(conv_outputs.shape[-1]):
46
+ conv_outputs[..., i] *= pooled_grads[i]
47
+
48
+ heatmap = tf.reduce_mean(conv_outputs, axis=-1).numpy()
49
+ heatmap = np.maximum(heatmap, 0)
50
+ heatmap /= np.max(heatmap)
51
+
52
+ return heatmap
53
+
54
+ # βœ… 5. Save Grad-CAM Overlay
55
+ def save_gradcam_image(original_img, heatmap, filename='gradcam.png', output_dir='results'):
56
+ """Save the Grad-CAM overlay image and return its path."""
57
+ if not os.path.exists(output_dir):
58
+ os.makedirs(output_dir)
59
+
60
+ img = np.array(original_img.resize((224, 224)))
61
+ heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
62
+ heatmap = np.uint8(255 * heatmap)
63
+
64
+ heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
65
+ overlay = cv2.addWeighted(img, 0.6, heatmap, 0.4, 0)
66
+
67
+ filepath = os.path.join(output_dir, filename)
68
+ cv2.imwrite(filepath, overlay)
69
+
70
+ return filepath
71
+
72
+ @app.route('/')
73
+ def home():
74
+ return "Glaucoma Detection Flask API is running!"
75
+
76
+ @app.route("/test_file")
77
+ def test_file():
78
+ """Check if the Firebase service account JSON is present and readable."""
79
+ filepath = "glaucoma-4b682-firebase-adminsdk-fbsvc-cd31fbe99d.json"
80
+ if os.path.exists(filepath):
81
+ return f"βœ… Service account file found at: {filepath}"
82
+ else:
83
+ return "❌ Service account JSON NOT found."
84
+
85
+ @app.route('/predict', methods=['POST'])
86
+ def predict():
87
+ """Perform prediction and save results to Firebase."""
88
+ if 'file' not in request.files:
89
+ return jsonify({'error': 'No file uploaded'}), 400
90
+
91
+ file = request.files['file']
92
+ if file.filename == '':
93
+ return jsonify({'error': 'No file selected'}), 400
94
+
95
+ try:
96
+ img = Image.open(file.stream).convert('RGB')
97
+ img_array = preprocess_image(img)
98
+
99
+ prediction = model.predict(img_array)[0]
100
+ glaucoma_prob = 1 - prediction[0]
101
+ normal_prob = prediction[0]
102
+ result = 'Glaucoma' if glaucoma_prob > normal_prob else 'Normal'
103
+ confidence = float(glaucoma_prob) if result == 'Glaucoma' else float(normal_prob)
104
+
105
+ # Grad-CAM
106
+ heatmap = make_gradcam(img_array, model, last_conv_layer_name='Conv2D_1')
107
+ gradcam_filename = f"gradcam_{int(datetime.now().timestamp())}.png"
108
+ save_gradcam_image(img, heatmap, filename=gradcam_filename)
109
+
110
+ # Save to Firebase
111
+ results_ref.push({
112
+ 'image_filename': file.filename,
113
+ 'prediction': result,
114
+ 'confidence': confidence,
115
+ 'gradcam_filename': gradcam_filename,
116
+ 'timestamp': datetime.now().isoformat()
117
+ })
118
+
119
+ return jsonify({
120
+ 'prediction': result,
121
+ 'confidence': confidence,
122
+ 'normal_probability': float(normal_prob),
123
+ 'glaucoma_probability': float(glaucoma_prob),
124
+ 'gradcam_image': gradcam_filename
125
+ })
126
+
127
+ except Exception as e:
128
+ return jsonify({'error': str(e)}), 500
129
+
130
+ @app.route('/results', methods=['GET'])
131
+ def results():
132
+ """List all results from the Firebase database."""
133
+ results_data = results_ref.get()
134
+ if not results_data:
135
+ results_data = []
136
+ return jsonify(results_data)
137
+
138
+ @app.route('/gradcam/<filename>')
139
+ def get_gradcam(filename):
140
+ """Serve the Grad-CAM overlay image."""
141
+ filepath = os.path.join('results', filename)
142
+ if os.path.exists(filepath):
143
+ return send_file(filepath, mimetype='image/png')
144
+ else:
145
+ return jsonify({'error': 'File not found'}), 404
146
+
147
+ if __name__ == '__main__':
148
+ app.run(host='0.0.0.0', port=7860)