dhruv2842 commited on
Commit
b7b8021
Β·
verified Β·
1 Parent(s): 73c8c5a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -10
app.py CHANGED
@@ -154,8 +154,6 @@ def predict():
154
  output[0, class_index].backward()
155
  cam = gradcam.generate(class_index)
156
 
157
-
158
-
159
  # βœ… Ensure cam is 2D
160
  if cam.ndim == 3:
161
  cam = cam[0]
@@ -164,18 +162,22 @@ def predict():
164
  cam = np.uint8(255 * cam)
165
  cam = cv2.resize(cam, (224, 224))
166
 
167
- # βœ… Create overlay
168
  original_img = np.asarray(img.resize((224, 224)))
169
  heatmap = cv2.applyColorMap(cam, cv2.COLORMAP_JET)
170
-
171
- # βœ… Final overlay
172
  overlay = cv2.addWeighted(original_img, 0.6, heatmap, 0.4, 0)
173
-
 
174
  gradcam_filename = f"gradcam_{timestamp}.png"
175
  gradcam_file_path = os.path.join(OUTPUT_DIR, gradcam_filename)
176
  cv2.imwrite(gradcam_file_path, overlay)
177
-
178
- # βœ… Save results to SQLite
 
 
 
 
 
179
  conn = sqlite3.connect(DB_PATH)
180
  cursor = conn.cursor()
181
  cursor.execute("""
@@ -184,7 +186,8 @@ def predict():
184
  """, (uploaded_filename, result, confidence, gradcam_filename, datetime.now().isoformat()))
185
  conn.commit()
186
  conn.close()
187
-
 
188
  return jsonify({
189
  'prediction': result,
190
  'confidence': confidence,
@@ -192,9 +195,9 @@ def predict():
192
  'early_glaucoma_probability': float(probabilities[1]),
193
  'advanced_glaucoma_probability': float(probabilities[2]),
194
  'gradcam_image': gradcam_filename,
 
195
  'image_filename': uploaded_filename
196
  })
197
-
198
  except Exception as e:
199
  return jsonify({'error': str(e)}), 500
200
 
 
154
  output[0, class_index].backward()
155
  cam = gradcam.generate(class_index)
156
 
 
 
157
  # βœ… Ensure cam is 2D
158
  if cam.ndim == 3:
159
  cam = cam[0]
 
162
  cam = np.uint8(255 * cam)
163
  cam = cv2.resize(cam, (224, 224))
164
 
165
+ # βœ… Create color overlay
166
  original_img = np.asarray(img.resize((224, 224)))
167
  heatmap = cv2.applyColorMap(cam, cv2.COLORMAP_JET)
 
 
168
  overlay = cv2.addWeighted(original_img, 0.6, heatmap, 0.4, 0)
169
+
170
+ # βœ… Save color overlay
171
  gradcam_filename = f"gradcam_{timestamp}.png"
172
  gradcam_file_path = os.path.join(OUTPUT_DIR, gradcam_filename)
173
  cv2.imwrite(gradcam_file_path, overlay)
174
+
175
+ # βœ… Save grayscale overlay
176
+ gray_filename = f"gradcam_gray_{timestamp}.png"
177
+ gray_file_path = os.path.join(OUTPUT_DIR, gray_filename)
178
+ cv2.imwrite(gray_file_path, cam)
179
+
180
+ # βœ… Save results to database
181
  conn = sqlite3.connect(DB_PATH)
182
  cursor = conn.cursor()
183
  cursor.execute("""
 
186
  """, (uploaded_filename, result, confidence, gradcam_filename, datetime.now().isoformat()))
187
  conn.commit()
188
  conn.close()
189
+
190
+ # βœ… Return results
191
  return jsonify({
192
  'prediction': result,
193
  'confidence': confidence,
 
195
  'early_glaucoma_probability': float(probabilities[1]),
196
  'advanced_glaucoma_probability': float(probabilities[2]),
197
  'gradcam_image': gradcam_filename,
198
+ 'gradcam_gray_image': gray_filename,
199
  'image_filename': uploaded_filename
200
  })
 
201
  except Exception as e:
202
  return jsonify({'error': str(e)}), 500
203