File size: 3,513 Bytes
827c483
728663b
827c483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728663b
f2f0f51
827c483
 
 
 
f2f0f51
827c483
 
 
 
 
 
 
 
 
 
 
728663b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import gradio as gr
from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, ServiceContext,LLMPredictor
from langchain.chat_models import ChatOpenAI
from llama_index.llm_predictor.chatgpt import ChatGPTLLMPredictor
import huggingface_hub
from huggingface_hub import Repository
from datetime import datetime
import csv

DATASET_REPO_URL = "https://huggingface.co/datasets/diazcalvi/kionlinde"#"https://huggingface.co/datasets/julien-c/persistent-space-dataset"
DATA_FILENAME = "kion.json"
DATA_FILE = os.path.join("data", DATA_FILENAME)

HF_TOKEN = os.environ.get("HF_TOKEN")
print("is none?", HF_TOKEN is None)

print("hfh", huggingface_hub.__version__)



#os.system("git config --global user.name \"Carlos Diaz\"")
#os.system("git config --global user.email \"[email protected]\"")


##repo = Repository(
#    local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
#)


index_name = "./data/kion.json"
documents_folder = "./documents"
#@st.experimental_memo
#@st.cache_resource
def initialize_index(index_name, documents_folder):
    #llm_predictor = ChatGPTLLMPredictor()
    llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")) #	text-davinci-003"))"gpt-3.5-turbo"
    
    service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor)
    if os.path.exists(index_name):
        index = GPTSimpleVectorIndex.load_from_disk(index_name)
    else:
        documents = SimpleDirectoryReader(documents_folder).load_data()
        index = GPTSimpleVectorIndex.from_documents(documents)
        index.save_to_disk(index_name)
        print(DATA_FILE)
        index.save_to_disk(DATA_FILE)

    return index

#@st.experimental_memo
#@st.cache_data(max_entries=200, persist=True)
def query_index(_index, query_text):
    response = _index.query(query_text)
    return str(response)

def generate_html() -> str:
    with open(DATA_FILE) as csvfile:
        reader = csv.DictReader(csvfile)
        rows = []
        for row in reader:
            rows.append(row)
        rows.reverse()
        if len(rows) == 0:
            return "no messages yet"
        else:
            html = "<div class='chatbot'>"
            for row in rows:
                html += "<div>"
                html += f"<span>{row['name']}</span>"
                html += f"<span class='message'>{row['message']}</span>"
                html += "</div>"
            html += "</div>"
            return html


def store_message(name: str, message: str):
    if name and message:
        print(DATA_FILE)
        print(DATA_FILENAME)
        print(DATASET_REPO_URL)
        with open(DATA_FILE, "a") as csvfile:
            writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
            writer.writerow(
                {"name": name, "message": message, "time": str(datetime.now())}
            )
        commit_url = repo.push_to_hub()
        print(commit_url)

    return commit_url #generate_html()



def greet(text):
    response = query_index(index, "Act as a KION equipment expert:" + text)
    return response




index = None
api_key = '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'#st.text_input("Enter your OpenAI API key here:", type="password")
if api_key:
    os.environ['OPENAI_API_KEY'] = api_key
    index = initialize_index(index_name, documents_folder)    


if index is None:
    st.warning("Please enter your api key first.")


iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()