Spaces:
Sleeping
Sleeping
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
from tools.final_answer import FinalAnswerTool | |
from datetime import datetime, timedelta | |
import json | |
from Gradio_UI import GradioUI | |
import os | |
from dotenv import load_dotenv | |
import openai | |
# Load environment variables from .env file | |
load_dotenv() | |
# Access the API key | |
openai.api_key = os.getenv('OPENAI_API_KEY') | |
# Below is the new deadline calculator tool | |
def multi_perspective_brainstorming(query: str) -> str: | |
"""A tool that generates and ranks creative ideas by simulating a brainstorming swarm of AI instances. | |
Args: | |
query: An open-ended query to brainstorm (e.g., 'Generate marketing ideas for a coffee shop'). | |
Returns: | |
A prioritized list of the top ideas synthesized from multiple perspectives. | |
""" | |
# Define brainstorming perspectives | |
perspectives = [ | |
{"focus": "Social Media", "prompt": f"Generate 3 creative marketing ideas for a coffee shop focused on social media: {query}"}, | |
{"focus": "Loyalty Programs", "prompt": f"Generate 3 creative marketing ideas for a coffee shop focused on loyalty programs: {query}"}, | |
{"focus": "Sustainability", "prompt": f"Generate 3 creative marketing ideas for a coffee shop focused on sustainability: {query}"}, | |
] | |
# Collect ideas from each perspective | |
all_ideas = [] | |
for perspective in perspectives: | |
response = openai.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{"role": "user", "content": perspective["prompt"]} | |
], | |
) | |
ideas = response.choices[0].message.content.split("\n") # Assume ideas are newline-separated | |
all_ideas.extend([f"{perspective['focus']}: {idea.strip()}" for idea in ideas if idea.strip()]) | |
# Rank the ideas by simulating a consensus | |
ranking_prompt = ( | |
f"From the following list of ideas, rank the top 5 based on creativity, feasibility, and impact for '{query}':\n" | |
f"{'\n'.join(all_ideas)}" | |
) | |
ranked_response = openai.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{"role": "user", "content": ranking_prompt} | |
], | |
) | |
return ranked_response.choices[0].message.content | |
def realtime_collaborative_assistant(query: str) -> str: | |
"""A tool that simulates a roundtable discussion with AI experts to provide a well-rounded response. | |
Args: | |
query: The user’s question or topic to discuss (e.g., 'How can I improve my website’s UX?'). | |
Returns: | |
A synthesized response combining insights from multiple AI perspectives. | |
""" | |
# Define expert personas with distinct roles | |
experts = [ | |
{"role": "UX Designer", "prompt": f"As a UX designer, provide practical suggestions for: {query}"}, | |
{"role": "Marketing Strategist", "prompt": f"As a marketing strategist, suggest how to approach: {query}"}, | |
{"role": "Tech Analyst", "prompt": f"As a tech analyst, offer technical insights on: {query}"}, | |
] | |
# Collect responses from each AI expert | |
expert_opinions = [] | |
for expert in experts: | |
response = openai.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{"role": "user", "content": expert["prompt"]} | |
], | |
) | |
expert_opinions.append(f"{expert['role']}: {response.choices[0].message.content}") | |
# Synthesize the responses into a cohesive answer | |
synthesis_prompt = ( | |
f"Synthesize the following expert opinions into a concise, well-rounded response to the query '{query}':\n" | |
f"{'\n'.join(expert_opinions)}" | |
) | |
final_response = openai.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{"role": "user", "content": synthesis_prompt} | |
], | |
) | |
return final_response.choices[0].message.content | |
final_answer = FinalAnswerTool() | |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud', #model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded | |
custom_role_conversions=None, | |
) | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer, multi_perspective_brainstorming, realtime_collaborative_assistant], ## add your tools here (don't remove final answer) | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() | |