Spaces:
Sleeping
Sleeping
Commit
·
26c4598
1
Parent(s):
857c85b
Update model.py
Browse files
model.py
CHANGED
|
@@ -1,145 +1,48 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
|
| 3 |
-
from
|
| 4 |
-
from typing import List, Dict, Optional
|
| 5 |
-
from uuid import uuid4
|
| 6 |
-
from sam_predictor import SAMPredictor
|
| 7 |
from label_studio_ml.model import LabelStudioMLBase
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
input_box = [int(x), int(y), int(box_width + x), int(box_height + y)]
|
| 44 |
-
|
| 45 |
-
print(f'Point coords are {point_coords}, point labels are {point_labels}, input box is {input_box}')
|
| 46 |
-
|
| 47 |
-
img_path = tasks[0]['data'][value]
|
| 48 |
-
predictor_results = PREDICTOR.predict(
|
| 49 |
-
img_path=img_path,
|
| 50 |
-
point_coords=point_coords or None,
|
| 51 |
-
point_labels=point_labels or None,
|
| 52 |
-
input_box=input_box
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
-
predictions = self.get_results(
|
| 56 |
-
masks=predictor_results['masks'],
|
| 57 |
-
probs=predictor_results['probs'],
|
| 58 |
-
width=image_width,
|
| 59 |
-
height=image_height,
|
| 60 |
-
from_name=from_name,
|
| 61 |
-
to_name=to_name,
|
| 62 |
-
label=selected_label)
|
| 63 |
-
|
| 64 |
-
return predictions
|
| 65 |
-
|
| 66 |
-
def get_results(self, masks, probs, width, height, from_name, to_name, label):
|
| 67 |
-
results = []
|
| 68 |
-
for mask, prob in zip(masks, probs):
|
| 69 |
-
# creates a random ID for your label everytime so no chance for errors
|
| 70 |
-
label_id = str(uuid4())[:4]
|
| 71 |
-
# converting the mask from the model to RLE format which is usable in Label Studio
|
| 72 |
-
mask = mask * 255
|
| 73 |
-
rle = brush.mask2rle(mask)
|
| 74 |
-
|
| 75 |
-
results.append({
|
| 76 |
-
'id': label_id,
|
| 77 |
-
'from_name': from_name,
|
| 78 |
-
'to_name': to_name,
|
| 79 |
-
'original_width': width,
|
| 80 |
-
'original_height': height,
|
| 81 |
-
'image_rotation': 0,
|
| 82 |
-
'value': {
|
| 83 |
-
'format': 'rle',
|
| 84 |
-
'rle': rle,
|
| 85 |
-
'brushlabels': [label],
|
| 86 |
-
},
|
| 87 |
-
'score': prob,
|
| 88 |
-
'type': 'brushlabels',
|
| 89 |
-
'readonly': False
|
| 90 |
})
|
|
|
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
if __name__ == '__main__':
|
| 99 |
-
# test the model
|
| 100 |
-
model = SamMLBackend()
|
| 101 |
-
model.use_label_config('''
|
| 102 |
-
<View>
|
| 103 |
-
<Image name="image" value="$image" zoom="true"/>
|
| 104 |
-
<BrushLabels name="tag" toName="image">
|
| 105 |
-
<Label value="Banana" background="#FF0000"/>
|
| 106 |
-
<Label value="Orange" background="#0d14d3"/>
|
| 107 |
-
</BrushLabels>
|
| 108 |
-
<KeyPointLabels name="tag2" toName="image" smart="true" >
|
| 109 |
-
<Label value="Banana" background="#000000" showInline="true"/>
|
| 110 |
-
<Label value="Orange" background="#000000" showInline="true"/>
|
| 111 |
-
</KeyPointLabels>
|
| 112 |
-
<RectangleLabels name="tag3" toName="image" >
|
| 113 |
-
<Label value="Banana" background="#000000" showInline="true"/>
|
| 114 |
-
<Label value="Orange" background="#000000" showInline="true"/>
|
| 115 |
-
</RectangleLabels>
|
| 116 |
-
</View>
|
| 117 |
-
''')
|
| 118 |
-
results = model.predict(
|
| 119 |
-
tasks=[{
|
| 120 |
-
'data': {
|
| 121 |
-
'image': 'https://s3.amazonaws.com/htx-pub/datasets/images/125245483_152578129892066_7843809718842085333_n.jpg'
|
| 122 |
-
}}],
|
| 123 |
-
context={
|
| 124 |
-
'result': [{
|
| 125 |
-
'original_width': 1080,
|
| 126 |
-
'original_height': 1080,
|
| 127 |
-
'image_rotation': 0,
|
| 128 |
-
'value': {
|
| 129 |
-
'x': 49.441786283891545,
|
| 130 |
-
'y': 59.96810207336522,
|
| 131 |
-
'width': 0.3189792663476874,
|
| 132 |
-
'labels': ['Banana'],
|
| 133 |
-
'keypointlabels': ['Banana']
|
| 134 |
-
},
|
| 135 |
-
'is_positive': True,
|
| 136 |
-
'id': 'fBWv1t0S2L',
|
| 137 |
-
'from_name': 'tag2',
|
| 138 |
-
'to_name': 'image',
|
| 139 |
-
'type': 'keypointlabels',
|
| 140 |
-
'origin': 'manual'
|
| 141 |
-
}]}
|
| 142 |
-
)
|
| 143 |
-
import json
|
| 144 |
-
results[0]['result'][0]['value']['rle'] = f'...{len(results[0]["result"][0]["value"]["rle"])} integers...'
|
| 145 |
-
print(json.dumps(results, indent=2))
|
|
|
|
| 1 |
import os
|
| 2 |
+
import logging
|
| 3 |
|
| 4 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
|
|
|
|
|
|
|
|
|
| 5 |
from label_studio_ml.model import LabelStudioMLBase
|
| 6 |
+
from lxml import etree
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Model(LabelStudioMLBase):
|
| 10 |
+
|
| 11 |
+
image_processor = AutoImageProcessor.from_pretrained("diegokauer/conditional-detr-coe-int")
|
| 12 |
+
model = AutoModelForObjectDetection.from_pretrained("diegokauer/conditional-detr-coe-int")
|
| 13 |
+
|
| 14 |
+
def __init__(self, **kwargs):
|
| 15 |
+
# don't forget to call base class constructor
|
| 16 |
+
super(Model, self).__init__(**kwargs)
|
| 17 |
+
|
| 18 |
+
# you can preinitialize variables with keys needed to extract info from tasks and annotations and form predictions
|
| 19 |
+
self.model = model
|
| 20 |
+
self.tokenizer = image_processor
|
| 21 |
+
self.id2label = model.config.id2label
|
| 22 |
+
|
| 23 |
+
def predict(self, tasks, **kwargs):
|
| 24 |
+
""" This is where inference happens: model returns
|
| 25 |
+
the list of predictions based on input list of tasks
|
| 26 |
+
"""
|
| 27 |
+
predictions = []
|
| 28 |
+
for task in tasks:
|
| 29 |
+
predictions.append({
|
| 30 |
+
'score': 0.987, # prediction overall score, visible in the data manager columns
|
| 31 |
+
'model_version': 'delorean-20151021', # all predictions will be differentiated by model version
|
| 32 |
+
'result': [{
|
| 33 |
+
'from_name': self.from_name,
|
| 34 |
+
'to_name': self.to_name,
|
| 35 |
+
'type': 'choices',
|
| 36 |
+
'score': 0.5, # per-region score, visible in the editor
|
| 37 |
+
'value': {
|
| 38 |
+
'choices': [self.labels[0]]
|
| 39 |
+
}
|
| 40 |
+
}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
})
|
| 42 |
+
return predictions
|
| 43 |
|
| 44 |
+
def fit(self, annotations, **kwargs):
|
| 45 |
+
""" This is where training happens: train your model given list of annotations,
|
| 46 |
+
then returns dict with created links and resources
|
| 47 |
+
"""
|
| 48 |
+
return {'path/to/created/model': 'my/model.bin'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|