Spaces:
Running
Running
File size: 4,529 Bytes
83a2a70 3ba690a 0490f39 e5eed83 83a2a70 e5eed83 c62298d 0490f39 83a2a70 0490f39 e5eed83 3ba690a e5574dd 3ba690a 937f1aa 3ba690a 74a942e 3ba690a 99af9f6 e5eed83 99af9f6 e5eed83 74a942e 3ba690a 74a942e 3caec61 83a2a70 3caec61 83a2a70 74a942e 9a96732 74a942e 83a2a70 e5eed83 74a942e e5eed83 74a942e e5eed83 8c27317 74a942e e5eed83 8c27317 e5eed83 8c27317 74a942e 8c27317 74a942e 8c27317 e5eed83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import os
import gradio as gr
import pandas as pd
import comtradeapicall
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
# کلید COMTRADE
subscription_key = os.getenv("COMTRADE_API_KEY", "")
# توکن Hugging Face
hf_token = os.getenv("HF_API_TOKEN")
client = InferenceClient(token=hf_token)
translator = GoogleTranslator(source='en', target='fa')
def get_importers(hs_code: str, year: str, month: str):
period = f"{year}{int(month):02d}"
df = comtradeapicall.previewFinalData(
typeCode='C', freqCode='M', clCode='HS', period=period,
reporterCode=None, cmdCode=hs_code, flowCode='M',
partnerCode=None, partner2Code=None,
customsCode=None, motCode=None,
maxRecords=500, includeDesc=True
)
if df is None or df.empty:
return pd.DataFrame(columns=["کد کشور", "نام کشور", "ارزش CIF"]), "برنج"
df = df[df['cifvalue'] > 0]
result = (
df.groupby(["reporterCode", "reporterDesc"], as_index=False)
.agg({"cifvalue": "sum"})
.sort_values("cifvalue", ascending=False)
)
result.columns = ["کد کشور", "نام کشور", "ارزش CIF"]
product_name = df['cmdDesc'].iloc[0] if 'cmdDesc' in df.columns else "برنج"
return result, product_name
def provide_advice(table_data: pd.DataFrame, hs_code: str, year: str, month: str, product_name: str):
if table_data is None or table_data.empty:
return "ابتدا باید اطلاعات واردات را نمایش دهید."
table_str = table_data.to_string(index=False)
period = f"{year}/{int(month):02d}"
prompt = (
f"The following table shows countries that imported the product '{product_name}' with HS code {hs_code} during the period {period}:\n"
f"{table_str}\n\n"
f"لطفاً یک تحلیل کامل ارائه دهید که شامل دو بخش باشد. بخش اول فرصتهای بازار و تقاضای بالقوه برای این محصول در این کشورها را بررسی کند، با توجه به عوامل فرهنگی، اقتصادی و جمعیتی. بخش دوم توصیههای استراتژیک عملی برای صادرکنندگان که این بازارها را هدف قرار دادهاند، با تمرکز بر استراتژیهای تجاری، مدیریت ریسک و ایجاد مشارکتهای محلی، ارائه دهد."
)
print("پرامپت ساختهشده:")
print(prompt)
try:
print("در حال فراخوانی مدل google/gemma-2b-it...")
outputs = client.text_generation(
prompt=prompt,
model="google/gemma-2b-it", # مدل سبکتر
max_new_tokens=1024
)
print("خروجی مدل دریافت شد (به انگلیسی):")
print(outputs)
# ترجمه خروجی به فارسی
translated_outputs = translator.translate(outputs)
print("خروجی ترجمهشده به فارسی:")
print(translated_outputs)
return translated_outputs
except Exception as e:
error_msg = f"خطا در تولید مشاوره: {str(e)}"
print(error_msg)
return error_msg
current_year = pd.Timestamp.now().year
years = [str(y) for y in range(2000, current_year+1)]
months = [str(m) for m in range(1, 13)]
with gr.Blocks() as demo:
gr.Markdown("## نمایش کشورهایی که یک کالا را وارد کردهاند")
with gr.Row():
inp_hs = gr.Textbox(label="HS Code", value="1006")
inp_year = gr.Dropdown(choices=years, label="سال", value=str(current_year))
inp_month = gr.Dropdown(choices=months, label="ماه", value=str(pd.Timestamp.now().month))
btn_show = gr.Button("نمایش اطلاعات")
out_table = gr.Dataframe(
headers=["کد کشور", "نام کشور", "ارزش CIF"],
datatype=["number", "text", "number"],
interactive=True,
)
btn_show.click(
fn=get_importers,
inputs=[inp_hs, inp_year, inp_month],
outputs=[out_table, gr.State()]
)
btn_advice = gr.Button("ارائه مشاوره تخصصی")
out_advice = gr.Textbox(label="مشاوره تخصصی", lines=6)
btn_advice.click(
fn=provide_advice,
inputs=[out_table, inp_hs, inp_year, inp_month, gr.State()],
outputs=out_advice
)
if __name__ == "__main__":
demo.launch() |