Spaces:
Sleeping
Sleeping
File size: 5,730 Bytes
80ef441 a0f773e 80ef441 a0f773e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# app.py
import os
import pandas as pd
import gradio as gr
import comtradeapicall
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
import spaces # برای مدیریت GPU کرایهای
# --- بارگذاری HS DATA از CSV گیتهاب ---
HS_CSV_URL = (
"https://raw.githubusercontent.com/"
"datasets/harmonized-system/master/data/harmonized-system.csv"
)
hs_df = pd.read_csv(HS_CSV_URL, dtype=str)
def get_product_name(hs_code: str) -> str:
code4 = str(hs_code).zfill(4)
row = hs_df[hs_df["hscode"] == code4]
return row.iloc[0]["description"] if not row.empty else "–"
# --- تابع دریافت واردات و پردازش ستونها ---
def get_importers(hs_code: str, year: str, month: str):
product_name = get_product_name(hs_code)
period = f"{year}{int(month):02d}"
df = comtradeapicall.previewFinalData(
typeCode='C', freqCode='M', clCode='HS', period=period,
reporterCode=None, cmdCode=hs_code, flowCode='M',
partnerCode=None, partner2Code=None,
customsCode=None, motCode=None,
maxRecords=500, includeDesc=True
)
if df is None or df.empty:
return product_name, pd.DataFrame()
# شناسایی ستونهای مورد نیاز (کد کشور، نام کشور، ارزش)
std_map = {
'کد کشور': 'ptCode',
'نام کشور': 'ptTitle',
'ارزش CIF': 'TradeValue'
}
code_col = std_map['کد کشور'] if 'ptCode' in df.columns else next((c for c in df.columns if 'code' in c.lower()), None)
title_col= std_map['نام کشور'] if 'ptTitle' in df.columns else next((c for c in df.columns if 'title' in c.lower()), None)
value_col= std_map['ارزش CIF'] if 'TradeValue' in df.columns else next((c for c in df.columns if 'value' in c.lower()), None)
if not (code_col and title_col and value_col):
return product_name, df
# محدودسازی به 10 کشور برتر بر اساس ستون value_col
df_sorted = df.sort_values(value_col, ascending=False).head(10)
out = df_sorted[[code_col, title_col, value_col]]
out.columns = ['کد کشور', 'نام کشور', 'ارزش CIF']
return product_name, out
# --- تابع تولید مشاوره تخصصی با GPU کرایهای ---
hf_token = os.getenv("HF_API_TOKEN")
client = InferenceClient(token=hf_token)
translator = GoogleTranslator(source='en', target='fa')
@spaces.GPU
def provide_advice(table_data: pd.DataFrame, hs_code: str, year: str, month: str):
if table_data is None or table_data.empty:
return "ابتدا نمایش دادههای واردات را انجام دهید."
# محدودسازی تعداد ردیفهای ورودی به 10 (در صورت بیشتر)
df_limited = table_data.head(10)
table_str = df_limited.to_string(index=False)
period = f"{year}/{int(month):02d}"
prompt = (
f"The following table shows the top {len(df_limited)} countries by CIF value importing HS code {hs_code} during {period}:\n"
f"{table_str}\n\n"
"Please provide a detailed and comprehensive analysis of market trends, risks, "
"and opportunities for a new exporter entering this market."
)
try:
outputs = client.text_generation(
prompt=prompt,
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
max_new_tokens=1024
)
return translator.translate(outputs)
except Exception as e:
return f"خطا در تولید مشاوره: {e}"
# --- رابط کاربری Gradio با تنظیمات UI ---
with gr.Blocks(css="""
/* رنگ پسزمینه سفید و متن سیاه */
body, .gradio-container { background-color: white !important; color: black !important; }
/* پنهان کردن فوتر و لینکهای Gradio */
footer, .gradio-info { display: none !important; }
/* افزودن استایل برای جدول */
.gradio-table { border: 1px solid #ddd; border-radius: 8px; }
/* استایل برای دکمهها */
.gr-button { background-color: #4CAF50; color: white; font-size: 16px; }
.gr-button:hover { background-color: #45a049; }
""") as demo:
# افزودن لوگو
gr.Image("https://cdn-ilalfgl.nitrocdn.com/CdpVmnTBcinnSxXeznJeoSCevtRYCUap/assets/images/optimized/rev-d50e51b/diginoron.com/wp-content/uploads/2024/06/diginoron-e1718654683899.png", elem_id="logo", interactive=False)
# عنوان سفارشی راستچین
gr.Markdown(
"<div dir='rtl' style='text-align: right; font-family: IRANSans;'>"
"<h2>هوش مصنوعی مشاوره صادراتی با HS Code محصول – ساخته شده توسط Diginoron</h2>"
"</div>"
)
with gr.Row():
inp_hs = gr.Textbox(label="کد HS", placeholder="مثلاً 1006")
inp_year = gr.Textbox(label="سال", placeholder="مثلاً 2023")
inp_month = gr.Textbox(label="ماه", placeholder="مثلاً 1 تا 12")
btn_show = gr.Button("نمایش دادههای واردات")
out_name = gr.Markdown(label="**نام محصول**")
out_table = gr.Dataframe(
datatype="pandas",
interactive=True
)
btn_show.click(
fn=get_importers,
inputs=[inp_hs, inp_year, inp_month],
outputs=[out_name, out_table]
)
btn_advice = gr.Button("ارائه مشاوره تخصصی")
out_advice = gr.Textbox(label="مشاوره تخصصی", lines=8)
btn_advice.click(
fn=provide_advice,
inputs=[out_table, inp_hs, inp_year, inp_month],
outputs=out_advice
)
if __name__ == "__main__":
demo.launch()
|