Spaces:
Running
Running
# app.py | |
import os | |
import gradio as gr | |
import pandas as pd | |
import comtradeapicall | |
from huggingface_hub import InferenceClient | |
from deep_translator import GoogleTranslator | |
import spaces # اضافهشده برای مدیریت GPU روی ZeroGPU Spaces | |
# کلید COMTRADE | |
subscription_key = os.getenv("COMTRADE_API_KEY", "") | |
# توکن Hugging Face | |
hf_token = os.getenv("HF_API_TOKEN") | |
client = InferenceClient(token=hf_token) | |
translator = GoogleTranslator(source='en', target='fa') | |
def get_importers(hs_code: str, year: str, month: str): | |
period = f"{year}{int(month):02d}" | |
df = comtradeapicall.previewFinalData( | |
typeCode='C', freqCode='M', clCode='HS', period=period, | |
reporterCode=None, cmdCode=hs_code, flowCode='M', | |
partnerCode=None, partner2Code=None, | |
customsCode=None, motCode=None, | |
maxRecords=500, includeDesc=True | |
) | |
if df is None or df.empty: | |
return pd.DataFrame() # خالی | |
# فقط ستونهای مورد نیاز را نگهدار | |
df = df[['ptCode', 'ptTitle', 'TradeValue']] | |
df.columns = ['کد کشور', 'نام کشور', 'ارزش CIF'] | |
return df | |
def provide_advice(table_data: pd.DataFrame, hs_code: str, year: str, month: str): | |
if table_data is None or table_data.empty: | |
return "ابتدا باید اطلاعات واردات را نمایش دهید." | |
table_str = table_data.to_string(index=False) | |
period = f"{year}/{int(month):02d}" | |
prompt = ( | |
f"The following table shows countries that imported a product with HS code {hs_code} during the period {period}:\n" | |
f"{table_str}\n\n" | |
"Please provide a detailed and comprehensive analysis of market trends, " | |
"risks, and opportunities for a new exporter entering this market. " | |
"Include competitive landscape, pricing benchmarks, logistical considerations, " | |
"risk management techniques, and steps to establish local partnerships." | |
) | |
try: | |
print("در حال فراخوانی مدل mistralai/Mixtral-8x7B-Instruct-v0.1...") | |
outputs = client.text_generation( | |
prompt=prompt, | |
model="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
max_new_tokens=1024 | |
) | |
print("خروجی مدل دریافت شد (به انگلیسی):") | |
print(outputs) | |
translated_outputs = translator.translate(outputs) | |
print("خروجی ترجمهشده به فارسی:") | |
print(translated_outputs) | |
return translated_outputs | |
except Exception as e: | |
error_msg = f"خطا در تولید مشاوره: {str(e)}" | |
print(error_msg) | |
return error_msg | |
with gr.Blocks() as demo: | |
gr.Markdown("## تحلیل واردات بر اساس کد HS و ارائه مشاوره تخصصی") | |
with gr.Row(): | |
inp_hs = gr.Textbox(label="کد HS", placeholder="مثلاً 100610") | |
inp_year = gr.Textbox(label="سال", placeholder="مثلاً 2023") | |
inp_month = gr.Textbox(label="ماه", placeholder="مثلاً 1 تا 12") | |
btn_show = gr.Button("نمایش واردات") | |
out_table = gr.Dataframe( | |
headers=["کد کشور", "نام کشور", "ارزش CIF"], | |
datatype=["number", "text", "number"], | |
interactive=True, | |
) | |
btn_show.click(get_importers, [inp_hs, inp_year, inp_month], out_table) | |
btn_advice = gr.Button("ارائه مشاوره تخصصی") | |
out_advice = gr.Textbox(label="مشاوره تخصصی", lines=6) | |
btn_advice.click( | |
provide_advice, | |
inputs=[out_table, inp_hs, inp_year, inp_month], | |
outputs=out_advice | |
) | |
if __name__ == "__main__": | |
demo.launch() | |