Tradingdata / app.py
diginoron's picture
Update app.py
d46e047 verified
raw
history blame
3.71 kB
# app.py
import os
import gradio as gr
import pandas as pd
import comtradeapicall
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
import spaces # اضافه‌شده برای مدیریت GPU روی ZeroGPU Spaces
# کلید COMTRADE
subscription_key = os.getenv("COMTRADE_API_KEY", "")
# توکن Hugging Face
hf_token = os.getenv("HF_API_TOKEN")
client = InferenceClient(token=hf_token)
translator = GoogleTranslator(source='en', target='fa')
def get_importers(hs_code: str, year: str, month: str):
period = f"{year}{int(month):02d}"
df = comtradeapicall.previewFinalData(
typeCode='C', freqCode='M', clCode='HS', period=period,
reporterCode=None, cmdCode=hs_code, flowCode='M',
partnerCode=None, partner2Code=None,
customsCode=None, motCode=None,
maxRecords=500, includeDesc=True
)
if df is None or df.empty:
return pd.DataFrame() # خالی
# فقط ستون‌های مورد نیاز را نگه‌دار
df = df[['ptCode', 'ptTitle', 'TradeValue']]
df.columns = ['کد کشور', 'نام کشور', 'ارزش CIF']
return df
@spaces.GPU
def provide_advice(table_data: pd.DataFrame, hs_code: str, year: str, month: str):
if table_data is None or table_data.empty:
return "ابتدا باید اطلاعات واردات را نمایش دهید."
table_str = table_data.to_string(index=False)
period = f"{year}/{int(month):02d}"
prompt = (
f"The following table shows countries that imported a product with HS code {hs_code} during the period {period}:\n"
f"{table_str}\n\n"
"Please provide a detailed and comprehensive analysis of market trends, "
"risks, and opportunities for a new exporter entering this market. "
"Include competitive landscape, pricing benchmarks, logistical considerations, "
"risk management techniques, and steps to establish local partnerships."
)
try:
print("در حال فراخوانی مدل mistralai/Mixtral-8x7B-Instruct-v0.1...")
outputs = client.text_generation(
prompt=prompt,
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
max_new_tokens=1024
)
print("خروجی مدل دریافت شد (به انگلیسی):")
print(outputs)
translated_outputs = translator.translate(outputs)
print("خروجی ترجمه‌شده به فارسی:")
print(translated_outputs)
return translated_outputs
except Exception as e:
error_msg = f"خطا در تولید مشاوره: {str(e)}"
print(error_msg)
return error_msg
with gr.Blocks() as demo:
gr.Markdown("## تحلیل واردات بر اساس کد HS و ارائه مشاوره تخصصی")
with gr.Row():
inp_hs = gr.Textbox(label="کد HS", placeholder="مثلاً 100610")
inp_year = gr.Textbox(label="سال", placeholder="مثلاً 2023")
inp_month = gr.Textbox(label="ماه", placeholder="مثلاً 1 تا 12")
btn_show = gr.Button("نمایش واردات")
out_table = gr.Dataframe(
headers=["کد کشور", "نام کشور", "ارزش CIF"],
datatype=["number", "text", "number"],
interactive=True,
)
btn_show.click(get_importers, [inp_hs, inp_year, inp_month], out_table)
btn_advice = gr.Button("ارائه مشاوره تخصصی")
out_advice = gr.Textbox(label="مشاوره تخصصی", lines=6)
btn_advice.click(
provide_advice,
inputs=[out_table, inp_hs, inp_year, inp_month],
outputs=out_advice
)
if __name__ == "__main__":
demo.launch()