# app.py import os import pandas as pd import gradio as gr import comtradeapicall from huggingface_hub import InferenceClient from deep_translator import GoogleTranslator import spaces # 1) بارگذاری HS DataFrame از گیت‌هاب HS_CSV_URL = ( "https://raw.githubusercontent.com/" "datasets/harmonized-system/master/data/harmonized-system.csv" ) hs_df = pd.read_csv(HS_CSV_URL, dtype=str) def get_product_name(hs_code: str) -> str: code4 = str(hs_code).zfill(4) row = hs_df[hs_df["hscode"] == code4] return row.iloc[0]["description"] if not row.empty else "–" def get_importers(hs_code: str, year: str, month: str): product_name = get_product_name(hs_code) period = f"{year}{int(month):02d}" df = comtradeapicall.previewFinalData( typeCode='C', freqCode='M', clCode='HS', period=period, reporterCode=None, cmdCode=hs_code, flowCode='M', partnerCode=None, partner2Code=None, customsCode=None, motCode=None, maxRecords=500, includeDesc=True ) if df is None or df.empty: return product_name, pd.DataFrame() df = df[['ptCode', 'ptTitle', 'TradeValue']] df.columns = ['کد کشور', 'نام کشور', 'ارزش CIF'] return product_name, df subscription_key = os.getenv("COMTRADE_API_KEY", "") hf_token = os.getenv("HF_API_TOKEN", "") client = InferenceClient(token=hf_token) translator = GoogleTranslator(source='en', target='fa') @spaces.GPU def provide_advice(table_data: pd.DataFrame, hs_code: str, year: str, month: str): if table_data is None or table_data.empty: return "ابتدا نمایش واردات را انجام دهید." table_str = table_data.to_string(index=False) period = f"{year}/{int(month):02d}" prompt = ( f"The following table shows countries that imported a product with HS code {hs_code} during {period}:\n" f"{table_str}\n\n" "Please provide a detailed and comprehensive analysis of market trends, risks, " "and opportunities for a new exporter entering this market." ) try: outputs = client.text_generation( prompt=prompt, model="mistralai/Mixtral-8x7B-Instruct-v0.1", max_new_tokens=1024 ) return translator.translate(outputs) except Exception as e: return f"خطا در تولید مشاوره: {e}" with gr.Blocks() as demo: gr.Markdown("## تحلیل واردات بر اساس کد HS و ارائه مشاوره") with gr.Row(): inp_hs = gr.Textbox(label="کد HS", placeholder="مثلاً 1006") inp_year = gr.Textbox(label="سال", placeholder="مثلاً 2023") inp_month = gr.Textbox(label="ماه", placeholder="مثلاً 1 تا 12") btn_show = gr.Button("نمایش واردات") out_name = gr.Markdown(label="**نام محصول**") out_table = gr.Dataframe( headers=["کد کشور","نام کشور","ارزش CIF"], datatype=["number","text","number"], interactive=True ) btn_show.click( get_importers, inputs=[inp_hs, inp_year, inp_month], outputs=[out_name, out_table] ) btn_advice = gr.Button("ارائه مشاوره") out_advice = gr.Textbox(label="مشاوره تخصصی", lines=8) btn_advice.click( provide_advice, inputs=[out_table, inp_hs, inp_year, inp_month], outputs=out_advice ) if __name__ == "__main__": demo.launch()