# app.py import os import pandas as pd import gradio as gr import comtradeapicall from huggingface_hub import InferenceClient from deep_translator import GoogleTranslator import spaces # برای مدیریت GPU کرایه‌ای # --- بارگذاری HS DATA از CSV گیت‌هاب --- HS_CSV_URL = ( "https://raw.githubusercontent.com/" "datasets/harmonized-system/master/data/harmonized-system.csv" ) hs_df = pd.read_csv(HS_CSV_URL, dtype=str) def get_product_name(hs_code: str) -> str: code4 = str(hs_code).zfill(4) row = hs_df[hs_df["hscode"] == code4] return row.iloc[0]["description"] if not row.empty else "–" # --- تابع دریافت واردات و پردازش ستون‌ها --- def get_importers(hs_code: str, year: str, month: str): product_name = get_product_name(hs_code) period = f"{year}{int(month):02d}" df = comtradeapicall.previewFinalData( typeCode='C', freqCode='M', clCode='HS', period=period, reporterCode=None, cmdCode=hs_code, flowCode='M', partnerCode=None, partner2Code=None, customsCode=None, motCode=None, maxRecords=500, includeDesc=True ) if df is None or df.empty: return product_name, pd.DataFrame() # شناسایی ستون‌های مورد نیاز (کد کشور، نام کشور، ارزش) # ابتدا سعی در استفاده از ستون‌های استاندارد std_map = { 'کد کشور': 'ptCode', 'نام کشور': 'ptTitle', 'ارزش CIF': 'TradeValue' } code_col = std_map['کد کشور'] if 'ptCode' in df.columns else next((c for c in df.columns if 'code' in c.lower()), None) title_col= std_map['نام کشور'] if 'ptTitle' in df.columns else next((c for c in df.columns if 'title' in c.lower()), None) value_col= std_map['ارزش CIF'] if 'TradeValue' in df.columns else next((c for c in df.columns if 'value' in c.lower()), None) if not (code_col and title_col and value_col): # اگر نتوانست ستون‌ها را شناسایی کند، برگرداندن DataFrame خام return product_name, df # محدودسازی به 10 کشور برتر بر اساس ستون value_col df_sorted = df.sort_values(value_col, ascending=False).head(10) out = df_sorted[[code_col, title_col, value_col]] out.columns = ['کد کشور', 'نام کشور', 'ارزش CIF'] return product_name, out # --- تابع تولید مشاوره تخصصی با GPU کرایه‌ای --- hf_token = os.getenv("HF_API_TOKEN") client = InferenceClient(token=hf_token) translator = GoogleTranslator(source='en', target='fa') @spaces.GPU def provide_advice(table_data: pd.DataFrame, hs_code: str, year: str, month: str): if table_data is None or table_data.empty: return "ابتدا نمایش داده‌های واردات را انجام دهید." # محدودسازی تعداد ردیف‌های ورودی به 10 (در صورت بیشتر) df_limited = table_data.head(10) table_str = df_limited.to_string(index=False) period = f"{year}/{int(month):02d}" prompt = ( f"The following table shows the top {len(df_limited)} countries by CIF value importing HS code {hs_code} during {period}:\n" f"{table_str}\n\n" "Please provide a detailed and comprehensive analysis of market trends, risks, " "and opportunities for a new exporter entering this market." ) try: outputs = client.text_generation( prompt=prompt, model="mistralai/Mixtral-8x7B-Instruct-v0.1", max_new_tokens=1024 ) return translator.translate(outputs) except Exception as e: return f"خطا در تولید مشاوره: {e}" # --- رابط کاربری Gradio --- with gr.Blocks() as demo: gr.Markdown("## DIGINORON.COM ابزار هوش مصنوعی برای مشاوره صادرات کالا به کشورهای هدف") with gr.Row(): inp_hs = gr.Textbox(label="کد HS", placeholder="مثلاً 1006") inp_year = gr.Textbox(label="سال", placeholder="مثلاً 2023") inp_month = gr.Textbox(label="ماه", placeholder="مثلاً 1 تا 12") btn_show = gr.Button("نمایش داده‌های واردات") out_name = gr.Markdown(label="**نام محصول**") out_table = gr.Dataframe( datatype="pandas", interactive=True ) btn_show.click( fn=get_importers, inputs=[inp_hs, inp_year, inp_month], outputs=[out_name, out_table] ) btn_advice = gr.Button("ارائه مشاوره تخصصی") out_advice = gr.Textbox(label="مشاوره تخصصی", lines=8) btn_advice.click( fn=provide_advice, inputs=[out_table, inp_hs, inp_year, inp_month], outputs=out_advice ) if __name__ == "__main__": demo.launch()