Spaces:
Running
Running
File size: 1,618 Bytes
2543f2c d751a8f 8c853ac d751a8f 2543f2c d751a8f 2543f2c d751a8f b98b6c1 2543f2c d751a8f 8c853ac 2543f2c b98b6c1 2543f2c b98b6c1 2543f2c d751a8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
from transformers import AutoTokenizer, Gemma3ForConditionalGeneration
from deep_translator import GoogleTranslator
import torch
# بارگذاری توکنایزر و مدل
tokenizer = AutoTokenizer.from_pretrained("google/gemma-3-4b-it")
model = Gemma3ForConditionalGeneration.from_pretrained("google/gemma-3-4b-it", torch_dtype=torch.bfloat16)
model.eval()
def generate_topics(field, major, keywords, audience, level):
prompt = f"""Suggest 3 academic thesis topics based on the following information:
Field: {field}
Specialization: {major}
Keywords: {keywords}
Target audience: {audience}
Level: {level}
"""
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=256)
english_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
translated_output = GoogleTranslator(source='en', target='fa').translate(english_output)
final_output = translated_output.strip() + "\n\n📢 برای مشاوره و راهنمایی تخصصی با گروه مشاوره کاسپین تماس بگیرید:\n02188252497"
return final_output
iface = gr.Interface(
fn=generate_topics,
inputs=[
gr.Textbox(label="رشته"),
gr.Textbox(label="گرایش"),
gr.Textbox(label="کلیدواژهها"),
gr.Textbox(label="جامعه هدف"),
gr.Dropdown(choices=["کارشناسی ارشد", "دکتری"], label="مقطع")
],
outputs="text",
title="🎓 پیشنهادگر موضوع پایاننامه کاسپین"
)
iface.launch()
|