Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,61 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
import os
|
4 |
import json
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
-
from huggingface_hub import login
|
8 |
-
from pinecone import Pinecone
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
-
from
|
|
|
11 |
|
12 |
-
#
|
13 |
-
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
|
14 |
-
PINECONE_INDEX_NAME = os.environ.get("INDEX_NAME", "tiyam-chat")
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
# 🔐 ورود به Hugging Face
|
21 |
-
login(token=HF_TOKEN)
|
22 |
-
|
23 |
-
# 🔹 بارگذاری مدل embedding
|
24 |
-
embedding_model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
25 |
-
|
26 |
-
# 🔹 بارگذاری داده اولیه (اختیاری)
|
27 |
-
with open("tiyam_qa_data.json", "r", encoding="utf-8") as f:
|
28 |
-
data = json.load(f)
|
29 |
|
30 |
-
#
|
31 |
pc = Pinecone(api_key=PINECONE_API_KEY)
|
32 |
index = pc.Index(PINECONE_INDEX_NAME)
|
33 |
|
34 |
-
#
|
35 |
-
tokenizer =
|
36 |
-
|
37 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
-
model = model.to(device)
|
39 |
|
40 |
-
#
|
41 |
def retrieve_answer(query, threshold=0.65, top_k=3):
|
42 |
query_embedding = embedding_model.encode([query])[0]
|
43 |
result = index.query(vector=query_embedding.tolist(), top_k=top_k, include_metadata=True)
|
44 |
|
45 |
if result['matches'] and result['matches'][0]['score'] > threshold:
|
|
|
46 |
metadata = result['matches'][0]['metadata']
|
47 |
-
return metadata.get('answer', '
|
48 |
else:
|
49 |
return "متأسفم، پاسخ دقیقی برای این سوال نداریم. لطفاً با ما تماس بگیرید."
|
50 |
|
51 |
-
#
|
52 |
-
def
|
53 |
-
prompt = f"
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
outputs = model.generate(
|
59 |
-
**inputs,
|
60 |
-
max_new_tokens=96,
|
61 |
-
temperature=0.7,
|
62 |
-
do_sample=True,
|
63 |
-
top_p=0.9
|
64 |
-
)
|
65 |
-
final_answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
66 |
-
return final_answer.replace(prompt, "").strip()
|
67 |
|
68 |
-
#
|
69 |
-
def chat_interface(
|
70 |
-
|
71 |
-
|
72 |
-
print("📤 پاسخ اولیه:", raw_answer)
|
73 |
-
final_answer = rewrite_answer(question, raw_answer)
|
74 |
-
print("✅ پاسخ نهایی:", final_answer)
|
75 |
-
return final_answer
|
76 |
|
|
|
77 |
demo = gr.Interface(
|
78 |
fn=chat_interface,
|
79 |
inputs="text",
|
80 |
outputs="text",
|
81 |
-
title="
|
82 |
-
description="سؤالات خود
|
83 |
)
|
84 |
|
85 |
demo.launch()
|
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
import torch
|
4 |
import gradio as gr
|
|
|
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
+
from pinecone import Pinecone
|
7 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
8 |
|
9 |
+
# بارگذاری توکنها از محیط امن
|
|
|
|
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
11 |
+
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
|
12 |
+
PINECONE_INDEX_NAME = os.environ.get("PINECONE_INDEX_NAME")
|
13 |
|
14 |
+
# بارگذاری مدل embedding
|
15 |
+
embedding_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", use_auth_token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# اتصال به Pinecone
|
18 |
pc = Pinecone(api_key=PINECONE_API_KEY)
|
19 |
index = pc.Index(PINECONE_INDEX_NAME)
|
20 |
|
21 |
+
# بارگذاری مدل زبانی MT5
|
22 |
+
tokenizer = T5Tokenizer.from_pretrained("google/mt5-small", token=HF_TOKEN)
|
23 |
+
language_model = T5ForConditionalGeneration.from_pretrained("google/mt5-small", token=HF_TOKEN)
|
|
|
|
|
24 |
|
25 |
+
# تابع جستجو در Pinecone
|
26 |
def retrieve_answer(query, threshold=0.65, top_k=3):
|
27 |
query_embedding = embedding_model.encode([query])[0]
|
28 |
result = index.query(vector=query_embedding.tolist(), top_k=top_k, include_metadata=True)
|
29 |
|
30 |
if result['matches'] and result['matches'][0]['score'] > threshold:
|
31 |
+
print(f"📊 Similarity: {result['matches'][0]['score']:.3f}")
|
32 |
metadata = result['matches'][0]['metadata']
|
33 |
+
return metadata.get('answer', 'پاسخی یافت نشد.')
|
34 |
else:
|
35 |
return "متأسفم، پاسخ دقیقی برای این سوال نداریم. لطفاً با ما تماس بگیرید."
|
36 |
|
37 |
+
# تابع تولید پاسخ طبیعی با MT5
|
38 |
+
def generate_natural_answer(question, raw_answer):
|
39 |
+
prompt = f"پرسش: {question}\nپاسخ دقیق: {raw_answer}\nپاسخ طبیعی:"
|
40 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(language_model.device)
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
outputs = language_model.generate(**inputs, max_new_tokens=128, do_sample=False)
|
44 |
|
45 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# اتصال همهچیز در رابط Gradio
|
48 |
+
def chat_interface(user_question):
|
49 |
+
raw_answer = retrieve_answer(user_question)
|
50 |
+
return generate_natural_answer(user_question, raw_answer)
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# رابط Gradio
|
53 |
demo = gr.Interface(
|
54 |
fn=chat_interface,
|
55 |
inputs="text",
|
56 |
outputs="text",
|
57 |
+
title="چتبات تیام",
|
58 |
+
description="سؤالات خود را از آژانس دیجیتال مارکتینگ تیام بپرسید."
|
59 |
)
|
60 |
|
61 |
demo.launch()
|