Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,15 +8,18 @@ from pinecone import Pinecone
|
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
|
11 |
-
# 🔐 گرفتن
|
12 |
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
|
13 |
PINECONE_INDEX_NAME = os.environ.get("INDEX_NAME", "tiyam-chat")
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
15 |
|
16 |
-
# 🔹 بارگذاری مدل embedding
|
17 |
-
embedding_model = SentenceTransformer(
|
|
|
|
|
|
|
18 |
|
19 |
-
# 🔹 بارگذاری دادهها (اختیاری برای تست
|
20 |
with open("tiyam_qa_data.json", "r", encoding="utf-8") as f:
|
21 |
data = json.load(f)
|
22 |
|
@@ -24,13 +27,13 @@ with open("tiyam_qa_data.json", "r", encoding="utf-8") as f:
|
|
24 |
pc = Pinecone(api_key=PINECONE_API_KEY)
|
25 |
index = pc.Index(PINECONE_INDEX_NAME)
|
26 |
|
27 |
-
# 🔹 بارگذاری مدل GEMMA
|
28 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", token=HF_TOKEN)
|
29 |
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", token=HF_TOKEN)
|
30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
model = model.to(device)
|
32 |
|
33 |
-
# 🔹
|
34 |
def retrieve_answer(query, threshold=0.65, top_k=3):
|
35 |
query_embedding = embedding_model.encode([query])[0]
|
36 |
result = index.query(vector=query_embedding.tolist(), top_k=top_k, include_metadata=True)
|
|
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
|
11 |
+
# 🔐 گرفتن سکرتها از محیط
|
12 |
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
|
13 |
PINECONE_INDEX_NAME = os.environ.get("INDEX_NAME", "tiyam-chat")
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
15 |
|
16 |
+
# 🔹 بارگذاری مدل embedding (با توکن)
|
17 |
+
embedding_model = SentenceTransformer(
|
18 |
+
'sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2',
|
19 |
+
use_auth_token=HF_TOKEN
|
20 |
+
)
|
21 |
|
22 |
+
# 🔹 بارگذاری دادهها (اختیاری – فقط برای نمایش اولیه یا تست)
|
23 |
with open("tiyam_qa_data.json", "r", encoding="utf-8") as f:
|
24 |
data = json.load(f)
|
25 |
|
|
|
27 |
pc = Pinecone(api_key=PINECONE_API_KEY)
|
28 |
index = pc.Index(PINECONE_INDEX_NAME)
|
29 |
|
30 |
+
# 🔹 بارگذاری مدل GEMMA برای بازنویسی
|
31 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it", token=HF_TOKEN)
|
32 |
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", token=HF_TOKEN)
|
33 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
model = model.to(device)
|
35 |
|
36 |
+
# 🔹 بازیابی پاسخ اولیه از Pinecone
|
37 |
def retrieve_answer(query, threshold=0.65, top_k=3):
|
38 |
query_embedding = embedding_model.encode([query])[0]
|
39 |
result = index.query(vector=query_embedding.tolist(), top_k=top_k, include_metadata=True)
|