Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,67 +1,63 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
5 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
assert PINECONE_API_KEY is not None, "\u274c PINECONE_API_KEY is missing!"
|
13 |
-
assert PINECONE_INDEX_NAME is not None, "\u274c PINECONE_INDEX_NAME is missing!"
|
14 |
-
assert HF_TOKEN is not None, "\u274c HF_TOKEN is missing!"
|
15 |
|
16 |
-
#
|
17 |
embedding_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
18 |
|
19 |
-
#
|
20 |
-
pc = pinecone.Pinecone(api_key=PINECONE_API_KEY)
|
21 |
-
index = pc.Index(PINECONE_INDEX_NAME)
|
22 |
-
|
23 |
-
# Load language model and tokenizer
|
24 |
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/gpt2-fa")
|
25 |
model = AutoModelForCausalLM.from_pretrained("HooshvareLab/gpt2-fa")
|
26 |
-
text_generator = pipeline(
|
27 |
-
"text-generation",
|
28 |
-
model=model,
|
29 |
-
tokenizer=tokenizer,
|
30 |
-
max_length=45,
|
31 |
-
do_sample=True,
|
32 |
-
top_p=0.95,
|
33 |
-
temperature=0.8,
|
34 |
-
return_full_text=False,
|
35 |
-
)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
question_embedding = embedding_model.encode(question).tolist()
|
41 |
-
|
42 |
-
# Step 2: Search similar questions in Pinecone
|
43 |
-
search_result = index.query(vector=question_embedding, top_k=1, include_metadata=True)
|
44 |
-
|
45 |
-
if search_result and search_result.matches:
|
46 |
-
best_match = search_result.matches[0].metadata.get("answer", "")
|
47 |
-
|
48 |
-
# Step 3: Rewrite with the language model
|
49 |
-
prompt = f"پرسش: {question}\nپاسخ: {best_match}\nپاسخ نهایی:"
|
50 |
-
output = text_generator(prompt, max_new_tokens=50)[0]["generated_text"]
|
51 |
-
return output.strip()
|
52 |
-
else:
|
53 |
-
return "پاسخی برای این پرسش در پایگاه داده یافت نشد. لطفاً با پشتیبانی تماس بگیرید."
|
54 |
|
55 |
-
|
56 |
-
return f"خطا: {str(e)}"
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
outputs=gr.Textbox(label="output"),
|
63 |
-
title="
|
64 |
-
description="سوالات خود درباره خدمات دیجیتال مارکتینگ تیام را
|
65 |
)
|
66 |
|
67 |
-
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
+
from pinecone import Pinecone
|
6 |
+
import gradio as gr
|
7 |
|
8 |
+
# انتشار متغیرها از Hugging Face secrets
|
9 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
10 |
+
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
11 |
+
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME")
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# مدل کوچک برای embedding (sentence-transformers)
|
14 |
embedding_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
15 |
|
16 |
+
# مدل زبانی GPT2 فارسی
|
|
|
|
|
|
|
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/gpt2-fa")
|
18 |
model = AutoModelForCausalLM.from_pretrained("HooshvareLab/gpt2-fa")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# اتصال به Pinecone
|
21 |
+
pc = Pinecone(api_key=PINECONE_API_KEY)
|
22 |
+
index = pc.Index(PINECONE_INDEX_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# توابع
|
|
|
25 |
|
26 |
+
def retrieve_from_pinecone(query):
|
27 |
+
query_embedding = embedding_model.encode(query).tolist()
|
28 |
+
search_result = index.query(vector=query_embedding, top_k=1, include_metadata=True)
|
29 |
+
try:
|
30 |
+
return search_result['matches'][0]['metadata']['answer']
|
31 |
+
except:
|
32 |
+
return "پاسخی برای این سوال پیدا نشد."
|
33 |
+
|
34 |
+
def generate_response(query):
|
35 |
+
base_answer = retrieve_from_pinecone(query)
|
36 |
+
prompt = f"{query}\n{base_answer}"
|
37 |
+
|
38 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
39 |
+
|
40 |
+
output = model.generate(
|
41 |
+
inputs["input_ids"],
|
42 |
+
attention_mask=inputs["attention_mask"],
|
43 |
+
max_new_tokens=30, # کمک به تسریع پاسخگویی
|
44 |
+
temperature=0.7,
|
45 |
+
do_sample=True,
|
46 |
+
pad_token_id=tokenizer.eos_token_id
|
47 |
+
)
|
48 |
+
|
49 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
50 |
+
|
51 |
+
# جدا کردن پاسخ تولیدی از prompt
|
52 |
+
return response.replace(prompt, "").strip()
|
53 |
+
|
54 |
+
# رابط کاربری Gradio
|
55 |
+
iface = gr.Interface(
|
56 |
+
fn=generate_response,
|
57 |
+
inputs=gr.Textbox(label="question", placeholder="سوال خود را وارد کنید"),
|
58 |
outputs=gr.Textbox(label="output"),
|
59 |
+
title="چتبات هوشمند تیام",
|
60 |
+
description="سوالات خود درباره خدمات دیجیتال مارکتینگ تیام را بپرسید"
|
61 |
)
|
62 |
|
63 |
+
iface.launch()
|