Add app.py and requirements.txt
Browse files- app.py +148 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import zipfile
|
3 |
+
import pickle
|
4 |
+
from glob import glob
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
from indexrl.training import (
|
11 |
+
DynamicBuffer,
|
12 |
+
create_model,
|
13 |
+
save_model,
|
14 |
+
explore,
|
15 |
+
train_iter,
|
16 |
+
)
|
17 |
+
from indexrl.environment import IndexRLEnv
|
18 |
+
from indexrl.utils import get_n_channels, state_to_expression
|
19 |
+
|
20 |
+
data_dir = "data/"
|
21 |
+
os.makedirs(data_dir, exist_ok=True)
|
22 |
+
|
23 |
+
meta_data_file = os.path.join(data_dir, "metadata.csv")
|
24 |
+
if not os.path.exists(meta_data_file):
|
25 |
+
with open(meta_data_file, "w") as fp:
|
26 |
+
fp.write("Name,Channels,Path\n")
|
27 |
+
|
28 |
+
|
29 |
+
def save_dataset(name, zip):
|
30 |
+
with zipfile.ZipFile(zip.name, "r") as zip_ref:
|
31 |
+
data_path = os.path.join(data_dir, name)
|
32 |
+
zip_ref.extractall(data_path)
|
33 |
+
|
34 |
+
img_path = glob(os.path.join(data_path, "images", "*.npy"))[0]
|
35 |
+
n_channels = get_n_channels(img_path)
|
36 |
+
|
37 |
+
with open(meta_data_file, "a") as fp:
|
38 |
+
fp.write(f"{name},{n_channels},{data_path}\n")
|
39 |
+
meta_data_df = pd.read_csv(meta_data_file)
|
40 |
+
return meta_data_df
|
41 |
+
|
42 |
+
|
43 |
+
def find_expression(dataset_name: str):
|
44 |
+
meta_data_df = pd.read_csv(meta_data_file, index_col="Name")
|
45 |
+
n_channels = meta_data_df["Channels"][dataset_name]
|
46 |
+
data_dir = meta_data_df["Path"][dataset_name]
|
47 |
+
|
48 |
+
image_dir = os.path.join(data_dir, "images")
|
49 |
+
mask_dir = os.path.join(data_dir, "masks")
|
50 |
+
|
51 |
+
cache_dir = os.path.join(data_dir, "cache")
|
52 |
+
logs_dir = os.path.join(data_dir, "logs")
|
53 |
+
models_dir = os.path.join(data_dir, "models")
|
54 |
+
for dir_name in (cache_dir, logs_dir, models_dir):
|
55 |
+
Path(dir_name).mkdir(parents=True, exist_ok=True)
|
56 |
+
|
57 |
+
action_list = (
|
58 |
+
list("()+-*/=") + ["sq", "sqrt"] + [f"c{c}" for c in range(n_channels)]
|
59 |
+
)
|
60 |
+
env = IndexRLEnv(action_list, 12)
|
61 |
+
agent, optimizer = create_model(len(action_list))
|
62 |
+
seen_path = os.path.join(cache_dir, "seen.pkl") if cache_dir else ""
|
63 |
+
env.save_seen(seen_path)
|
64 |
+
data_buffer = DynamicBuffer()
|
65 |
+
|
66 |
+
i = 0
|
67 |
+
while True:
|
68 |
+
i += 1
|
69 |
+
print(f"----------------\nIteration {i}")
|
70 |
+
print("Collecting data...")
|
71 |
+
data = explore(
|
72 |
+
env.copy(),
|
73 |
+
agent,
|
74 |
+
image_dir,
|
75 |
+
mask_dir,
|
76 |
+
1,
|
77 |
+
logs_dir,
|
78 |
+
seen_path,
|
79 |
+
n_iters=1000,
|
80 |
+
)
|
81 |
+
print(
|
82 |
+
f"Data collection done. Collected {len(data)} examples. Buffer size = {len(data_buffer)}."
|
83 |
+
)
|
84 |
+
|
85 |
+
data_buffer.add_data(data)
|
86 |
+
print(f"Buffer size new = {len(data_buffer)}.")
|
87 |
+
|
88 |
+
agent, optimizer, loss = train_iter(agent, optimizer, data_buffer)
|
89 |
+
|
90 |
+
i_str = str(i).rjust(3, "0")
|
91 |
+
if models_dir:
|
92 |
+
save_model(agent, f"{models_dir}/model_{i_str}_loss-{loss}.pt")
|
93 |
+
if cache_dir:
|
94 |
+
with open(f"{cache_dir}/data_buffer_{i_str}.pkl", "wb") as fp:
|
95 |
+
pickle.dump(data_buffer, fp)
|
96 |
+
|
97 |
+
with open(os.path.join(logs_dir, "tree_1.txt"), "r", encoding="utf-8") as fp:
|
98 |
+
tree = fp.read()
|
99 |
+
|
100 |
+
top_5 = data_buffer.get_top_n(5)
|
101 |
+
top_5_str = "\n".join(
|
102 |
+
map(
|
103 |
+
lambda x: " ".join(state_to_expression(x[0], action_list))
|
104 |
+
+ " "
|
105 |
+
+ str(x[1]),
|
106 |
+
top_5,
|
107 |
+
)
|
108 |
+
)
|
109 |
+
|
110 |
+
yield tree, top_5_str
|
111 |
+
|
112 |
+
|
113 |
+
with gr.Blocks() as demo:
|
114 |
+
gr.Markdown("# IndexRL")
|
115 |
+
meta_data_df = pd.read_csv(meta_data_file)
|
116 |
+
|
117 |
+
with gr.Tab("Find Expressions"):
|
118 |
+
select_dataset = gr.Dropdown(
|
119 |
+
label="Select Dataset",
|
120 |
+
choices=meta_data_df["Name"].to_list(),
|
121 |
+
)
|
122 |
+
find_exp_btn = gr.Button("Find Expressions")
|
123 |
+
stop_btn = gr.Button("Stop")
|
124 |
+
out_exp_tree = gr.Textbox(label="Latest Expression Tree", interactive=False)
|
125 |
+
best_exps = gr.Textbox(label="Best Expressions", interactive=False)
|
126 |
+
|
127 |
+
with gr.Tab("Datasets"):
|
128 |
+
dataset_upload = gr.File(label="Upload Data ZIP file")
|
129 |
+
dataset_name = gr.Textbox(label="Dataset Name")
|
130 |
+
dataset_upload_btn = gr.Button("Upload")
|
131 |
+
|
132 |
+
dataset_table = gr.Dataframe(meta_data_df, label="Dataset Table")
|
133 |
+
|
134 |
+
find_exp_event = find_exp_btn.click(
|
135 |
+
find_expression, inputs=[select_dataset], outputs=[out_exp_tree, best_exps]
|
136 |
+
)
|
137 |
+
stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[find_exp_event])
|
138 |
+
|
139 |
+
dataset_upload.upload(
|
140 |
+
lambda x: ".".join(os.path.basename(x.orig_name).split(".")[:-1]),
|
141 |
+
inputs=dataset_upload,
|
142 |
+
outputs=dataset_name,
|
143 |
+
)
|
144 |
+
dataset_upload_btn.click(
|
145 |
+
save_dataset, inputs=[dataset_name, dataset_upload], outputs=[dataset_table]
|
146 |
+
)
|
147 |
+
|
148 |
+
demo.queue(concurrency_count=10).launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
indexrl==0.1.1
|
2 |
+
gradio==3.34.0
|