Spaces:
Paused
Paused
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import numpy as np | |
| import torch | |
| from torch.nn import functional as F | |
| from densepose.data.meshes.catalog import MeshCatalog | |
| from densepose.structures.mesh import load_mesh_symmetry | |
| from densepose.structures.transform_data import DensePoseTransformData | |
| class DensePoseDataRelative: | |
| """ | |
| Dense pose relative annotations that can be applied to any bounding box: | |
| x - normalized X coordinates [0, 255] of annotated points | |
| y - normalized Y coordinates [0, 255] of annotated points | |
| i - body part labels 0,...,24 for annotated points | |
| u - body part U coordinates [0, 1] for annotated points | |
| v - body part V coordinates [0, 1] for annotated points | |
| segm - 256x256 segmentation mask with values 0,...,14 | |
| To obtain absolute x and y data wrt some bounding box one needs to first | |
| divide the data by 256, multiply by the respective bounding box size | |
| and add bounding box offset: | |
| x_img = x0 + x_norm * w / 256.0 | |
| y_img = y0 + y_norm * h / 256.0 | |
| Segmentation masks are typically sampled to get image-based masks. | |
| """ | |
| # Key for normalized X coordinates in annotation dict | |
| X_KEY = "dp_x" | |
| # Key for normalized Y coordinates in annotation dict | |
| Y_KEY = "dp_y" | |
| # Key for U part coordinates in annotation dict (used in chart-based annotations) | |
| U_KEY = "dp_U" | |
| # Key for V part coordinates in annotation dict (used in chart-based annotations) | |
| V_KEY = "dp_V" | |
| # Key for I point labels in annotation dict (used in chart-based annotations) | |
| I_KEY = "dp_I" | |
| # Key for segmentation mask in annotation dict | |
| S_KEY = "dp_masks" | |
| # Key for vertex ids (used in continuous surface embeddings annotations) | |
| VERTEX_IDS_KEY = "dp_vertex" | |
| # Key for mesh id (used in continuous surface embeddings annotations) | |
| MESH_NAME_KEY = "ref_model" | |
| # Number of body parts in segmentation masks | |
| N_BODY_PARTS = 14 | |
| # Number of parts in point labels | |
| N_PART_LABELS = 24 | |
| MASK_SIZE = 256 | |
| def __init__(self, annotation, cleanup=False): | |
| self.x = torch.as_tensor(annotation[DensePoseDataRelative.X_KEY]) | |
| self.y = torch.as_tensor(annotation[DensePoseDataRelative.Y_KEY]) | |
| if ( | |
| DensePoseDataRelative.I_KEY in annotation | |
| and DensePoseDataRelative.U_KEY in annotation | |
| and DensePoseDataRelative.V_KEY in annotation | |
| ): | |
| self.i = torch.as_tensor(annotation[DensePoseDataRelative.I_KEY]) | |
| self.u = torch.as_tensor(annotation[DensePoseDataRelative.U_KEY]) | |
| self.v = torch.as_tensor(annotation[DensePoseDataRelative.V_KEY]) | |
| if ( | |
| DensePoseDataRelative.VERTEX_IDS_KEY in annotation | |
| and DensePoseDataRelative.MESH_NAME_KEY in annotation | |
| ): | |
| self.vertex_ids = torch.as_tensor( | |
| annotation[DensePoseDataRelative.VERTEX_IDS_KEY], dtype=torch.long | |
| ) | |
| self.mesh_id = MeshCatalog.get_mesh_id(annotation[DensePoseDataRelative.MESH_NAME_KEY]) | |
| if DensePoseDataRelative.S_KEY in annotation: | |
| self.segm = DensePoseDataRelative.extract_segmentation_mask(annotation) | |
| self.device = torch.device("cpu") | |
| if cleanup: | |
| DensePoseDataRelative.cleanup_annotation(annotation) | |
| def to(self, device): | |
| if self.device == device: | |
| return self | |
| new_data = DensePoseDataRelative.__new__(DensePoseDataRelative) | |
| new_data.x = self.x.to(device) | |
| new_data.y = self.y.to(device) | |
| for attr in ["i", "u", "v", "vertex_ids", "segm"]: | |
| if hasattr(self, attr): | |
| setattr(new_data, attr, getattr(self, attr).to(device)) | |
| if hasattr(self, "mesh_id"): | |
| new_data.mesh_id = self.mesh_id | |
| new_data.device = device | |
| return new_data | |
| def extract_segmentation_mask(annotation): | |
| import pycocotools.mask as mask_utils | |
| # TODO: annotation instance is accepted if it contains either | |
| # DensePose segmentation or instance segmentation. However, here we | |
| # only rely on DensePose segmentation | |
| poly_specs = annotation[DensePoseDataRelative.S_KEY] | |
| if isinstance(poly_specs, torch.Tensor): | |
| # data is already given as mask tensors, no need to decode | |
| return poly_specs | |
| segm = torch.zeros((DensePoseDataRelative.MASK_SIZE,) * 2, dtype=torch.float32) | |
| if isinstance(poly_specs, dict): | |
| if poly_specs: | |
| mask = mask_utils.decode(poly_specs) | |
| segm[mask > 0] = 1 | |
| else: | |
| for i in range(len(poly_specs)): | |
| poly_i = poly_specs[i] | |
| if poly_i: | |
| mask_i = mask_utils.decode(poly_i) | |
| segm[mask_i > 0] = i + 1 | |
| return segm | |
| def validate_annotation(annotation): | |
| for key in [ | |
| DensePoseDataRelative.X_KEY, | |
| DensePoseDataRelative.Y_KEY, | |
| ]: | |
| if key not in annotation: | |
| return False, "no {key} data in the annotation".format(key=key) | |
| valid_for_iuv_setting = all( | |
| key in annotation | |
| for key in [ | |
| DensePoseDataRelative.I_KEY, | |
| DensePoseDataRelative.U_KEY, | |
| DensePoseDataRelative.V_KEY, | |
| ] | |
| ) | |
| valid_for_cse_setting = all( | |
| key in annotation | |
| for key in [ | |
| DensePoseDataRelative.VERTEX_IDS_KEY, | |
| DensePoseDataRelative.MESH_NAME_KEY, | |
| ] | |
| ) | |
| if not valid_for_iuv_setting and not valid_for_cse_setting: | |
| return ( | |
| False, | |
| "expected either {} (IUV setting) or {} (CSE setting) annotations".format( | |
| ", ".join( | |
| [ | |
| DensePoseDataRelative.I_KEY, | |
| DensePoseDataRelative.U_KEY, | |
| DensePoseDataRelative.V_KEY, | |
| ] | |
| ), | |
| ", ".join( | |
| [ | |
| DensePoseDataRelative.VERTEX_IDS_KEY, | |
| DensePoseDataRelative.MESH_NAME_KEY, | |
| ] | |
| ), | |
| ), | |
| ) | |
| return True, None | |
| def cleanup_annotation(annotation): | |
| for key in [ | |
| DensePoseDataRelative.X_KEY, | |
| DensePoseDataRelative.Y_KEY, | |
| DensePoseDataRelative.I_KEY, | |
| DensePoseDataRelative.U_KEY, | |
| DensePoseDataRelative.V_KEY, | |
| DensePoseDataRelative.S_KEY, | |
| DensePoseDataRelative.VERTEX_IDS_KEY, | |
| DensePoseDataRelative.MESH_NAME_KEY, | |
| ]: | |
| if key in annotation: | |
| del annotation[key] | |
| def apply_transform(self, transforms, densepose_transform_data): | |
| self._transform_pts(transforms, densepose_transform_data) | |
| if hasattr(self, "segm"): | |
| self._transform_segm(transforms, densepose_transform_data) | |
| def _transform_pts(self, transforms, dp_transform_data): | |
| import detectron2.data.transforms as T | |
| # NOTE: This assumes that HorizFlipTransform is the only one that does flip | |
| do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1 | |
| if do_hflip: | |
| self.x = self.MASK_SIZE - self.x | |
| if hasattr(self, "i"): | |
| self._flip_iuv_semantics(dp_transform_data) | |
| if hasattr(self, "vertex_ids"): | |
| self._flip_vertices() | |
| for t in transforms.transforms: | |
| if isinstance(t, T.RotationTransform): | |
| xy_scale = np.array((t.w, t.h)) / DensePoseDataRelative.MASK_SIZE | |
| xy = t.apply_coords(np.stack((self.x, self.y), axis=1) * xy_scale) | |
| self.x, self.y = torch.tensor(xy / xy_scale, dtype=self.x.dtype).T | |
| def _flip_iuv_semantics(self, dp_transform_data: DensePoseTransformData) -> None: | |
| i_old = self.i.clone() | |
| uv_symmetries = dp_transform_data.uv_symmetries | |
| pt_label_symmetries = dp_transform_data.point_label_symmetries | |
| for i in range(self.N_PART_LABELS): | |
| if i + 1 in i_old: | |
| annot_indices_i = i_old == i + 1 | |
| if pt_label_symmetries[i + 1] != i + 1: | |
| self.i[annot_indices_i] = pt_label_symmetries[i + 1] | |
| u_loc = (self.u[annot_indices_i] * 255).long() | |
| v_loc = (self.v[annot_indices_i] * 255).long() | |
| self.u[annot_indices_i] = uv_symmetries["U_transforms"][i][v_loc, u_loc].to( | |
| device=self.u.device | |
| ) | |
| self.v[annot_indices_i] = uv_symmetries["V_transforms"][i][v_loc, u_loc].to( | |
| device=self.v.device | |
| ) | |
| def _flip_vertices(self): | |
| mesh_info = MeshCatalog[MeshCatalog.get_mesh_name(self.mesh_id)] | |
| mesh_symmetry = ( | |
| load_mesh_symmetry(mesh_info.symmetry) if mesh_info.symmetry is not None else None | |
| ) | |
| self.vertex_ids = mesh_symmetry["vertex_transforms"][self.vertex_ids] | |
| def _transform_segm(self, transforms, dp_transform_data): | |
| import detectron2.data.transforms as T | |
| # NOTE: This assumes that HorizFlipTransform is the only one that does flip | |
| do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1 | |
| if do_hflip: | |
| self.segm = torch.flip(self.segm, [1]) | |
| self._flip_segm_semantics(dp_transform_data) | |
| for t in transforms.transforms: | |
| if isinstance(t, T.RotationTransform): | |
| self._transform_segm_rotation(t) | |
| def _flip_segm_semantics(self, dp_transform_data): | |
| old_segm = self.segm.clone() | |
| mask_label_symmetries = dp_transform_data.mask_label_symmetries | |
| for i in range(self.N_BODY_PARTS): | |
| if mask_label_symmetries[i + 1] != i + 1: | |
| self.segm[old_segm == i + 1] = mask_label_symmetries[i + 1] | |
| def _transform_segm_rotation(self, rotation): | |
| self.segm = F.interpolate(self.segm[None, None, :], (rotation.h, rotation.w)).numpy() | |
| self.segm = torch.tensor(rotation.apply_segmentation(self.segm[0, 0]))[None, None, :] | |
| self.segm = F.interpolate(self.segm, [DensePoseDataRelative.MASK_SIZE] * 2)[0, 0] | |