Spaces:
Runtime error
Runtime error
| import math | |
| import os | |
| from glob import glob | |
| from pathlib import Path | |
| from typing import Optional | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from einops import rearrange, repeat | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| from torchvision.transforms import ToTensor | |
| from scripts.util.detection.nsfw_and_watermark_dectection import \ | |
| DeepFloydDataFiltering | |
| from sgm.inference.helpers import embed_watermark | |
| from sgm.util import default, instantiate_from_config | |
| from huggingface_hub import hf_hub_download | |
| import gradio as gr | |
| import uuid | |
| from simple_video_sample import sample | |
| num_frames = 25 | |
| num_steps = 30 | |
| model_config = "scripts/sampling/configs/svd_xt.yaml" | |
| device = "cuda" | |
| #hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints", token=os.getenv("HF_TOKEN")) | |
| def run_sampling( | |
| input_path: str, | |
| num_frames: Optional[int] = 25, | |
| num_steps: Optional[int] = 30, | |
| version: str = "svd_xt", | |
| fps_id: int = 6, | |
| motion_bucket_id: int = 127, | |
| cond_aug: float = 0.02, | |
| seed: int = 23, | |
| decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. | |
| ): | |
| output_folder = str(uuid.uuid4()) | |
| print(output_folder) | |
| sample(input_path, version, output_folder, decoding_t) | |
| return f"{output_folder}/000000.mp4" | |
| def get_unique_embedder_keys_from_conditioner(conditioner): | |
| return list(set([x.input_key for x in conditioner.embedders])) | |
| def get_batch(keys, value_dict, N, T, device): | |
| batch = {} | |
| batch_uc = {} | |
| for key in keys: | |
| if key == "fps_id": | |
| batch[key] = ( | |
| torch.tensor([value_dict["fps_id"]]) | |
| .to(device) | |
| .repeat(int(math.prod(N))) | |
| ) | |
| elif key == "motion_bucket_id": | |
| batch[key] = ( | |
| torch.tensor([value_dict["motion_bucket_id"]]) | |
| .to(device) | |
| .repeat(int(math.prod(N))) | |
| ) | |
| elif key == "cond_aug": | |
| batch[key] = repeat( | |
| torch.tensor([value_dict["cond_aug"]]).to(device), | |
| "1 -> b", | |
| b=math.prod(N), | |
| ) | |
| elif key == "cond_frames": | |
| batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0]) | |
| elif key == "cond_frames_without_noise": | |
| batch[key] = repeat( | |
| value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0] | |
| ) | |
| else: | |
| batch[key] = value_dict[key] | |
| if T is not None: | |
| batch["num_video_frames"] = T | |
| for key in batch.keys(): | |
| if key not in batch_uc and isinstance(batch[key], torch.Tensor): | |
| batch_uc[key] = torch.clone(batch[key]) | |
| return batch, batch_uc | |
| def resize_image(image_path, output_size=(1024, 576)): | |
| with Image.open(image_path) as image: | |
| # Calculate aspect ratios | |
| target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size | |
| image_aspect = image.width / image.height # Aspect ratio of the original image | |
| # Resize then crop if the original image is larger | |
| if image_aspect > target_aspect: | |
| # Resize the image to match the target height, maintaining aspect ratio | |
| new_height = output_size[1] | |
| new_width = int(new_height * image_aspect) | |
| resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) | |
| # Calculate coordinates for cropping | |
| left = (new_width - output_size[0]) / 2 | |
| top = 0 | |
| right = (new_width + output_size[0]) / 2 | |
| bottom = output_size[1] | |
| else: | |
| # Resize the image to match the target width, maintaining aspect ratio | |
| new_width = output_size[0] | |
| new_height = int(new_width / image_aspect) | |
| resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) | |
| # Calculate coordinates for cropping | |
| left = 0 | |
| top = (new_height - output_size[1]) / 2 | |
| right = output_size[0] | |
| bottom = (new_height + output_size[1]) / 2 | |
| # Crop the image | |
| cropped_image = resized_image.crop((left, top, right, bottom)) | |
| return cropped_image | |
| css = ''' | |
| .gradio-container{max-width:850px !important} | |
| ''' | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown('''# Stable Video Diffusion - Image2Video - XT | |
| Generate 25 frames of video from a single image with SDV-XT. [Join the waitlist](https://stability.ai/contact) for the text-to-video web experience | |
| ''') | |
| with gr.Column(): | |
| image = gr.Image(label="Upload your image (it will be center cropped to 1024x576)", type="filepath") | |
| generate_btn = gr.Button("Generate") | |
| #with gr.Accordion("Advanced options", open=False): | |
| # cond_aug = gr.Slider(label="Conditioning augmentation", value=0.02, minimum=0.0) | |
| # seed = gr.Slider(label="Seed", value=42, minimum=0, maximum=int(1e9), step=1) | |
| #decoding_t = gr.Slider(label="Decode frames at a time", value=6, minimum=1, maximum=14, interactive=False) | |
| # saving_fps = gr.Slider(label="Saving FPS", value=6, minimum=6, maximum=48, step=6) | |
| with gr.Column(): | |
| video = gr.Video() | |
| image.upload(fn=resize_image, inputs=image, outputs=image) | |
| generate_btn.click(fn=run_sampling, inputs=[image], outputs=video, api_name="video") | |
| demo.launch() | |