Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import os | |
import uuid | |
import random | |
from glob import glob | |
from pathlib import Path | |
from typing import Optional | |
from diffusers import StableVideoDiffusionPipeline | |
from diffusers.utils import load_image, export_to_video | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
# ------------------------------------------------------------------------ | |
# FIX: Adapt to the available hardware (GPU or CPU) | |
# ------------------------------------------------------------------------ | |
# Automatically detect the device and select the appropriate data type. | |
# This makes the code runnable on machines with or without a dedicated NVIDIA GPU. | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if device == "cuda" else torch.float32 | |
# Load the pipeline onto the detected device. | |
pipe = StableVideoDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch_dtype, variant="fp16" | |
) | |
pipe.to(device) | |
# Apply torch.compile for optimization only if on a GPU, as it's most effective there. | |
if device == "cuda": | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
# ------------------------------------------------------------------------ | |
max_64_bit_int = 2**63 - 1 | |
# Function to sample video from the input image | |
def sample( | |
image: Image, | |
seed: Optional[int] = 42, | |
randomize_seed: bool = True, | |
motion_bucket_id: int = 127, | |
fps_id: int = 6, | |
version: str = "svd_xt", | |
cond_aug: float = 0.02, | |
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. | |
output_folder: str = "outputs", | |
): | |
if image.mode == "RGBA": | |
image = image.convert("RGB") | |
if randomize_seed: | |
seed = random.randint(0, max_64_bit_int) | |
generator = torch.manual_seed(seed) | |
os.makedirs(output_folder, exist_ok=True) | |
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | |
frames = pipe( | |
image, | |
decode_chunk_size=decoding_t, | |
generator=generator, | |
motion_bucket_id=motion_bucket_id, | |
noise_aug_strength=0.1, | |
num_frames=25 | |
).frames[0] | |
export_to_video(frames, video_path, fps=fps_id) | |
torch.manual_seed(seed) | |
return video_path, seed | |
# Function to resize the uploaded image to the model's optimal input size | |
def resize_image(image, output_size=(1024, 576)): | |
# Resizes and crops the image to a 16:9 aspect ratio. | |
target_aspect = output_size[0] / output_size[1] | |
image_aspect = image.width / image.height | |
if image_aspect > target_aspect: | |
new_height = output_size[1] | |
new_width = int(new_height * image_aspect) | |
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) | |
left = (new_width - output_size[0]) / 2 | |
top = 0 | |
right = (new_width + output_size[0]) / 2 | |
bottom = output_size[1] | |
else: | |
new_width = output_size[0] | |
new_height = int(new_width / image_aspect) | |
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) | |
left = 0 | |
top = (new_height - output_size[1]) / 2 | |
right = output_size[0] | |
bottom = (new_height + output_size[1]) / 2 | |
cropped_image = resized_image.crop((left, top, right, bottom)) | |
return cropped_image | |
# Dynamically load image files from the 'images' directory | |
def get_example_images(): | |
image_dir = "images/" | |
if not os.path.exists(image_dir): | |
os.makedirs(image_dir) | |
image_files = glob(os.path.join(image_dir, "*.png")) + glob(os.path.join(image_dir, "*.jpg")) | |
return image_files | |
# Gradio interface setup | |
with gr.Blocks() as demo: | |
gr.Markdown('''# Stable Video Diffusion | |
#### Generate short videos from a single image.''') | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Upload Your Image", type="pil") | |
generate_btn = gr.Button("Generate Video", variant="primary") | |
video = gr.Video(label="Generated Video") | |
with gr.Accordion("Advanced Options", open=False): | |
seed = gr.Slider(label="Seed", value=42, minimum=0, maximum=max_64_bit_int, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
motion_bucket_id = gr.Slider(label="Motion Bucket ID", info="Controls the amount of motion in the video.", value=127, minimum=1, maximum=255) | |
fps_id = gr.Slider(label="Frames Per Second (FPS)", info="Adjusts the playback speed of the video.", value=7, minimum=5, maximum=30) | |
# When a new image is uploaded, process it immediately | |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) | |
# When the generate button is clicked, run the sampling function | |
generate_btn.click( | |
fn=sample, | |
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], | |
outputs=[video, seed], | |
api_name="video" | |
) | |
# Dynamically load examples from the filesystem | |
example_images = get_example_images() | |
if example_images: | |
gr.Examples( | |
examples=example_images, | |
inputs=image, | |
outputs=[video, seed], | |
fn=lambda img: sample(resize_image(Image.open(img))), # Resize example images before sampling | |
cache_examples=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20) | |
demo.launch(share=True) |