Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,22 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
#import gradio.helpers
|
| 3 |
import torch
|
| 4 |
import os
|
|
|
|
|
|
|
|
|
|
| 5 |
from glob import glob
|
| 6 |
from pathlib import Path
|
| 7 |
from typing import Optional
|
| 8 |
-
|
| 9 |
from diffusers import StableVideoDiffusionPipeline
|
| 10 |
from diffusers.utils import load_image, export_to_video
|
| 11 |
from PIL import Image
|
| 12 |
-
|
| 13 |
-
import uuid
|
| 14 |
-
import random
|
| 15 |
from huggingface_hub import hf_hub_download
|
| 16 |
|
| 17 |
-
#gradio.helpers.CACHED_FOLDER = '/data/cache'
|
| 18 |
-
|
| 19 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 20 |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
| 21 |
)
|
| 22 |
pipe.to("cuda")
|
| 23 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 24 |
-
#pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
| 25 |
-
|
| 26 |
max_64_bit_int = 2**63 - 1
|
| 27 |
|
| 28 |
def sample(
|
|
@@ -39,19 +33,22 @@ def sample(
|
|
| 39 |
):
|
| 40 |
if image.mode == "RGBA":
|
| 41 |
image = image.convert("RGB")
|
| 42 |
-
|
| 43 |
if(randomize_seed):
|
| 44 |
seed = random.randint(0, max_64_bit_int)
|
| 45 |
generator = torch.manual_seed(seed)
|
| 46 |
-
|
|
|
|
| 47 |
os.makedirs(output_folder, exist_ok=True)
|
| 48 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 49 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 50 |
|
| 51 |
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
|
|
|
|
|
|
| 52 |
export_to_video(frames, video_path, fps=fps_id)
|
| 53 |
torch.manual_seed(seed)
|
| 54 |
-
|
|
|
|
| 55 |
return video_path, seed
|
| 56 |
|
| 57 |
def resize_image(image, output_size=(1024, 576)):
|
|
@@ -65,6 +62,7 @@ def resize_image(image, output_size=(1024, 576)):
|
|
| 65 |
new_height = output_size[1]
|
| 66 |
new_width = int(new_height * image_aspect)
|
| 67 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
| 68 |
# Calculate coordinates for cropping
|
| 69 |
left = (new_width - output_size[0]) / 2
|
| 70 |
top = 0
|
|
@@ -75,6 +73,7 @@ def resize_image(image, output_size=(1024, 576)):
|
|
| 75 |
new_width = output_size[0]
|
| 76 |
new_height = int(new_width / image_aspect)
|
| 77 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
| 78 |
# Calculate coordinates for cropping
|
| 79 |
left = 0
|
| 80 |
top = (new_height - output_size[1]) / 2
|
|
@@ -86,14 +85,18 @@ def resize_image(image, output_size=(1024, 576)):
|
|
| 86 |
return cropped_image
|
| 87 |
|
| 88 |
with gr.Blocks() as demo:
|
| 89 |
-
gr.Markdown('''#
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
''')
|
|
|
|
| 92 |
with gr.Row():
|
| 93 |
with gr.Column():
|
| 94 |
image = gr.Image(label="Upload your image", type="pil")
|
| 95 |
generate_btn = gr.Button("Generate")
|
| 96 |
video = gr.Video()
|
|
|
|
| 97 |
with gr.Accordion("Advanced options", open=False):
|
| 98 |
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
| 99 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
@@ -104,15 +107,15 @@ with gr.Blocks() as demo:
|
|
| 104 |
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
|
| 105 |
gr.Examples(
|
| 106 |
examples=[
|
| 107 |
-
"images/
|
| 108 |
-
"images/
|
| 109 |
-
"images/
|
| 110 |
-
"images/
|
| 111 |
-
"images/
|
| 112 |
-
"images/
|
| 113 |
-
"images/
|
| 114 |
-
"images/
|
| 115 |
-
"images/
|
| 116 |
],
|
| 117 |
inputs=image,
|
| 118 |
outputs=[video, seed],
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
+
import uuid
|
| 5 |
+
import random
|
| 6 |
+
|
| 7 |
from glob import glob
|
| 8 |
from pathlib import Path
|
| 9 |
from typing import Optional
|
|
|
|
| 10 |
from diffusers import StableVideoDiffusionPipeline
|
| 11 |
from diffusers.utils import load_image, export_to_video
|
| 12 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 13 |
from huggingface_hub import hf_hub_download
|
| 14 |
|
|
|
|
|
|
|
| 15 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 16 |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
| 17 |
)
|
| 18 |
pipe.to("cuda")
|
| 19 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
|
|
|
|
|
| 20 |
max_64_bit_int = 2**63 - 1
|
| 21 |
|
| 22 |
def sample(
|
|
|
|
| 33 |
):
|
| 34 |
if image.mode == "RGBA":
|
| 35 |
image = image.convert("RGB")
|
|
|
|
| 36 |
if(randomize_seed):
|
| 37 |
seed = random.randint(0, max_64_bit_int)
|
| 38 |
generator = torch.manual_seed(seed)
|
| 39 |
+
|
| 40 |
+
# Count completed mp4 videos and set the path
|
| 41 |
os.makedirs(output_folder, exist_ok=True)
|
| 42 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 43 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 44 |
|
| 45 |
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
| 46 |
+
|
| 47 |
+
# Export frames to video
|
| 48 |
export_to_video(frames, video_path, fps=fps_id)
|
| 49 |
torch.manual_seed(seed)
|
| 50 |
+
|
| 51 |
+
# Return the video and seed
|
| 52 |
return video_path, seed
|
| 53 |
|
| 54 |
def resize_image(image, output_size=(1024, 576)):
|
|
|
|
| 62 |
new_height = output_size[1]
|
| 63 |
new_width = int(new_height * image_aspect)
|
| 64 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 65 |
+
|
| 66 |
# Calculate coordinates for cropping
|
| 67 |
left = (new_width - output_size[0]) / 2
|
| 68 |
top = 0
|
|
|
|
| 73 |
new_width = output_size[0]
|
| 74 |
new_height = int(new_width / image_aspect)
|
| 75 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 76 |
+
|
| 77 |
# Calculate coordinates for cropping
|
| 78 |
left = 0
|
| 79 |
top = (new_height - output_size[1]) / 2
|
|
|
|
| 85 |
return cropped_image
|
| 86 |
|
| 87 |
with gr.Blocks() as demo:
|
| 88 |
+
gr.Markdown('''# Stable Video Diffusion using Image 2 Video XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt),
|
| 89 |
+
[paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets),
|
| 90 |
+
[stability's ui waitlist](https://stability.ai/contact))
|
| 91 |
+
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
|
| 92 |
''')
|
| 93 |
+
|
| 94 |
with gr.Row():
|
| 95 |
with gr.Column():
|
| 96 |
image = gr.Image(label="Upload your image", type="pil")
|
| 97 |
generate_btn = gr.Button("Generate")
|
| 98 |
video = gr.Video()
|
| 99 |
+
|
| 100 |
with gr.Accordion("Advanced options", open=False):
|
| 101 |
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
| 102 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
| 107 |
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
|
| 108 |
gr.Examples(
|
| 109 |
examples=[
|
| 110 |
+
"images/01.png",
|
| 111 |
+
"images/02.png",
|
| 112 |
+
"images/03.png",
|
| 113 |
+
"images/04.png",
|
| 114 |
+
"images/05.png",
|
| 115 |
+
"images/06.png",
|
| 116 |
+
"images/07.png",
|
| 117 |
+
"images/08.png",
|
| 118 |
+
"images/09.png"
|
| 119 |
],
|
| 120 |
inputs=image,
|
| 121 |
outputs=[video, seed],
|