Spaces:
Sleeping
Sleeping
File size: 3,313 Bytes
b10b892 e71b560 b10b892 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
with gr.Blocks() as demo:
gr.Markdown("## Zephyr Chatbot with Custom UI")
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
msg = gr.Textbox(label="Type your message...", scale=6)
send_btn = gr.Button("Send", scale=1)
role_dropdown = gr.Dropdown(choices=["SDE", "BA"], label="Select Role", value="SDE")
system = gr.Textbox(value="You are a friendly chatbot.", label="System message")
max_tokens = gr.Slider(1, 2048, value=512, label="Max tokens")
temperature = gr.Slider(0.1, 4.0, value=0.7, label="Temperature", step=0.1)
top_p = gr.Slider(0.1, 1.0, value=0.95, label="Top-p", step=0.05)
with gr.Row():
clear_btn = gr.Button("Clear Chat")
dummy_btn = gr.Button("Dummy Action")
def handle_submit(message, history, system, max_tokens, temperature, top_p):
response_gen = response(message, history, system, max_tokens, temperature, top_p)
final_response = ""
for r in response_gen:
final_response = r
updated_history = history + [(message, final_response)]
return updated_history, updated_history, ""
send_btn.click(
handle_submit,
[msg, state, system, max_tokens, temperature, top_p],
[chatbot, state, msg],
)
msg.submit(
handle_submit,
[msg, state, system, max_tokens, temperature, top_p],
[chatbot, state, msg],
)
clear_btn.click(lambda: ([], [], ""), None, [chatbot, state, msg])
dummy_btn.click(lambda: gr.Info("Dummy action clicked!"), None, None)
if __name__ == "__main__":
demo.launch()
|