Spaces:
Sleeping
Sleeping
Switching from zephyr to gpt turbo
Browse files
app.py
CHANGED
@@ -5,47 +5,52 @@ from langchain_community.vectorstores import Chroma
|
|
5 |
from langchain_huggingface import HuggingFaceEmbeddings, ChatHuggingFace
|
6 |
from langchain_core.runnables import RunnablePassthrough, Runnable
|
7 |
from io import BytesIO
|
|
|
8 |
from langchain_core.output_parsers import StrOutputParser
|
9 |
from langchain_core.documents import Document
|
10 |
from langchain_core.prompts import ChatPromptTemplate
|
11 |
from langchain.text_splitter import CharacterTextSplitter
|
12 |
-
from huggingface_hub import InferenceClient
|
13 |
import logging
|
|
|
14 |
|
15 |
# logging.basicConfig(level=logging.INFO)
|
16 |
# logger = logging.getLogger(__name__)
|
17 |
|
18 |
-
|
19 |
|
20 |
-
class HuggingFaceInterferenceClientRunnable(Runnable):
|
21 |
-
def __init__(self, client, max_tokens=512, temperature=0.7, top_p=0.95):
|
22 |
-
self.client = client
|
23 |
-
self.max_tokens = max_tokens
|
24 |
-
self.temperature = temperature
|
25 |
-
self.top_p = top_p
|
26 |
|
27 |
-
|
28 |
-
prompt = input.to_messages()[0].content
|
29 |
-
messages = [{"role": "user", "content": prompt}]
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
top_p=self.top_p
|
38 |
-
):
|
39 |
-
token = part.choices[0].delta.content
|
40 |
-
if token:
|
41 |
-
response += token
|
42 |
|
43 |
-
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
def extract_pdf_text(url: str) -> str:
|
@@ -70,7 +75,13 @@ vectorstore = Chroma.from_documents(
|
|
70 |
)
|
71 |
retriever = vectorstore.as_retriever()
|
72 |
|
73 |
-
llm =
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
# Before RAG chain
|
76 |
before_rag_template = "What is {topic}"
|
@@ -103,7 +114,9 @@ after_rag_chain = (
|
|
103 |
|
104 |
def process_query(role, system_message, max_tokens, temperature, top_p):
|
105 |
|
106 |
-
llm.
|
|
|
|
|
107 |
|
108 |
# Before RAG
|
109 |
before_rag_result = before_rag_chain.invoke({"topic": "Hugging Face"})
|
|
|
5 |
from langchain_huggingface import HuggingFaceEmbeddings, ChatHuggingFace
|
6 |
from langchain_core.runnables import RunnablePassthrough, Runnable
|
7 |
from io import BytesIO
|
8 |
+
from langchain_openai import ChatOpenAI
|
9 |
from langchain_core.output_parsers import StrOutputParser
|
10 |
from langchain_core.documents import Document
|
11 |
from langchain_core.prompts import ChatPromptTemplate
|
12 |
from langchain.text_splitter import CharacterTextSplitter
|
13 |
+
# from huggingface_hub import InferenceClient
|
14 |
import logging
|
15 |
+
import os
|
16 |
|
17 |
# logging.basicConfig(level=logging.INFO)
|
18 |
# logger = logging.getLogger(__name__)
|
19 |
|
20 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "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")
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
|
|
24 |
|
25 |
+
# class HuggingFaceInterferenceClientRunnable(Runnable):
|
26 |
+
# def __init__(self, client, max_tokens=512, temperature=0.7, top_p=0.95):
|
27 |
+
# self.client = client
|
28 |
+
# self.max_tokens = max_tokens
|
29 |
+
# self.temperature = temperature
|
30 |
+
# self.top_p = top_p
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# def invoke(self, input, config=None):
|
33 |
+
# prompt = input.to_messages()[0].content
|
34 |
+
# messages = [{"role": "user", "content": prompt}]
|
35 |
|
36 |
+
# response = ""
|
37 |
+
# for part in self.client.chat_completion(
|
38 |
+
# messages,
|
39 |
+
# max_tokens=self.max_tokens,
|
40 |
+
# stream=True,
|
41 |
+
# temperature=self.temperature,
|
42 |
+
# top_p=self.top_p
|
43 |
+
# ):
|
44 |
+
# token = part.choices[0].delta.content
|
45 |
+
# if token:
|
46 |
+
# response += token
|
47 |
+
|
48 |
+
# return response
|
49 |
+
|
50 |
+
# def update_params(self, max_tokens, temperature, top_p):
|
51 |
+
# self.max_tokens = max_tokens
|
52 |
+
# self.temperature=temperature
|
53 |
+
# self.top_p=top_p
|
54 |
|
55 |
|
56 |
def extract_pdf_text(url: str) -> str:
|
|
|
75 |
)
|
76 |
retriever = vectorstore.as_retriever()
|
77 |
|
78 |
+
llm = ChatOpenAI(
|
79 |
+
model="gpt-3.5-turbo",
|
80 |
+
api_key=OPENAI_API_KEY,
|
81 |
+
max_tokens=512,
|
82 |
+
temperature=0.7,
|
83 |
+
top_p=0.95
|
84 |
+
)
|
85 |
|
86 |
# Before RAG chain
|
87 |
before_rag_template = "What is {topic}"
|
|
|
114 |
|
115 |
def process_query(role, system_message, max_tokens, temperature, top_p):
|
116 |
|
117 |
+
llm.max_tokens = max_tokens
|
118 |
+
llm.temperature = temperature
|
119 |
+
llm.top_p = top_p
|
120 |
|
121 |
# Before RAG
|
122 |
before_rag_result = before_rag_chain.invoke({"topic": "Hugging Face"})
|