import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] + history messages.append({"role":"user","content":message}) reponse = "" # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) for part in client.chat_completion( messages, max_tokens=max_tokens, streams=True, temperature=temperature, top_p=top_p ): token = part.choices[0].delta.content if token: response += token history.append({"role":"user", "content": message}) history.append({"role":"assistant", "content": respond}) return history,"" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) with gr.Blocks() as demo: gr.Markdown("## Zephyr Chatbot with Custom UI") chatbot = gr.Chatbot(type="messages", label="Chatbot") state = gr.State([]) with gr.Row(): msg = gr.Textbox(label="Type your message...", scale=6) send_btn = gr.Button("Send", scale=1) role_dropdown = gr.Dropdown(choices=["SDE", "BA"], label="Select Role", value="SDE") system = gr.Textbox(value="You are a friendly chatbot.", label="System message") max_tokens = gr.Slider(1, 2048, value=512, label="Max tokens") temperature = gr.Slider(0.1, 4.0, value=0.7, label="Temperature", step=0.1) top_p = gr.Slider(0.1, 1.0, value=0.95, label="Top-p", step=0.05) with gr.Row(): clear_btn = gr.Button("Clear Chat") dummy_btn = gr.Button("Dummy Action") def handle_submit(message, history, system, max_tokens, temperature, top_p): response_gen = response(message, history, system, max_tokens, temperature, top_p) final_response = "" for r in response_gen: final_response = r updated_history = history + [(message, final_response)] return updated_history, updated_history, "" send_btn.click( handle_submit, [msg, state, system, max_tokens, temperature, top_p], [chatbot, state, msg], ) msg.submit( handle_submit, [msg, state, system, max_tokens, temperature, top_p], [chatbot, state, msg], ) clear_btn.click(lambda: ([], [], ""), None, [chatbot, state, msg]) dummy_btn.click(lambda: gr.Info("Dummy action clicked!"), None, None) if __name__ == "__main__": demo.launch()