import gradio as gr import requests from pdfminer.high_level import extract_text from langchain_community.vectorstores import Chroma from langchain_huggingface import HuggingFaceEmbeddings, ChatHuggingFace from langchain_core.runnables import RunnablePassthrough from io import BytesIO from langchain_core.output_parsers import StrOutputParser from langchain_core.documents import Document from langchain_core.prompts import ChatPromptTemplate from langchain.text_splitter import CharacterTextSplitter from huggingface_hub import InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def extract_pdf_text(url: str) -> str: response = requests.get(url) pdf_file = BytesIO(response.content) text = extract_text(pdf_file) return text pdf_url = "https://huggingface.co/spaces/disLodge/Call_model/raw/main/temp.pdf" text = extract_pdf_text(pdf_url) docs_list = [Document(page_content=text)] text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=7500, chunk_overlap=100) docs_splits = text_splitter.split_documents(docs_list) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") vectorstore = Chroma.from_documents( documents=docs_splits, collection_name="rag-chroma", embedding=embeddings, ) retriever = vectorstore.as_retriever() llm = ChatHuggingFace( huggingfacehub_api_token=None, model_id="HuggingFaceH4/zephyr-7b-beta", interference_client=client, ) # Before RAG chain before_rag_template = "What is {topic}" before_rag_prompt = ChatPromptTemplate.from_template(before_rag_template) before_rag_chain = before_rag_prompt | llm | StrOutputParser() # After RAG chain after_rag_template = """You are a {role}. Summarize the following content for yourself and speak in terms of first person. Only include content relevant to that role like a resume summary. Context: {context} Question: Give a one paragraph summary of the key skills a {role} can have from this document. """ after_rag_prompt = ChatPromptTemplate.from_template(after_rag_template) def format_query(input_dict): return f"Give a one paragraph summary of the key skills a {input_dict['role']} can have from this document." after_rag_chain = ( { "context": format_query | retriever, "role": lambda x: x["role"], } | after_rag_prompt | llm | StrOutputParser() ) def process_query(role, system_message, max_tokens, temperature, top_p): client.max_tokens = max_tokens client.temperature = temperature client.top_p = top_p # Before RAG before_rag_result = before_rag_chain.invoke({"topic": "Hugging Face"}) # After RAG after_rag_result = after_rag_chain.invoke({"role": role}) return f"**Before RAG**\n{before_rag_result}\n\n**After RAG**\n{after_rag_result}" with gr.Blocks() as demo: gr.Markdown("## Zephyr Chatbot Controls") role_dropdown = gr.Dropdown(choices=["SDE", "BA"], label="Select Role", value="SDE") system_message = gr.Textbox(value="You are a friendly chatbot.", label="System message") max_tokens = gr.Slider(1, 2048, value=512, label="Max tokens") temperature = gr.Slider(0.1, 4.0, value=0.7, label="Temperature", step=0.1) top_p = gr.Slider(0.1, 1.0, value=0.95, label="Top-p", step=0.05) output = gr.Textbox(label="Output", lines=20) submit_btn = gr.Button("Submit") clear_btn = gr.Button("Clear") submit_btn.click( fn=process_query, inputs=[role_dropdown, system_message, max_tokens, temperature, top_p], outputs=output ) clear_btn.click( fn=lambda: ("", gr.Info("Chat cleared!")), outputs=[output] ) if __name__ == "__main__": demo.launch()