Spaces:
Sleeping
Sleeping
File size: 26,508 Bytes
3906c88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# Set page config
st.set_page_config(
page_title="Customer Churn Analysis",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
@st.cache_data
def load_data():
"""Load and combine the churn datasets"""
try:
df1 = pd.read_csv('churn-bigml-20.csv')
df2 = pd.read_csv('churn-bigml-80.csv')
# Add dataset identifier
df1['Dataset'] = 'Test (20%)'
df2['Dataset'] = 'Train (80%)'
# Combine datasets
df_combined = pd.concat([df1, df2], ignore_index=True)
return df1, df2, df_combined
except Exception as e:
st.error(f"Error loading data: {str(e)}")
return None, None, None
def main():
st.title("π Customer Churn Analysis - Exploratory Data Analysis")
st.markdown("---")
# Load data
df_test, df_train, df_combined = load_data()
# Check if data loading was successful
if df_test is None or df_train is None or df_combined is None:
st.error("Failed to load data. Please check the CSV files exist and are properly formatted.")
return
# Sidebar
st.sidebar.title("π Analysis Options")
# Dataset selection
dataset_option = st.sidebar.selectbox(
"Select Dataset:",
["Combined Dataset", "Training Set (80%)", "Test Set (20%)"]
)
if dataset_option == "Combined Dataset":
df = df_combined
st.sidebar.info(f"π Total Records: {len(df):,}")
elif dataset_option == "Training Set (80%)":
df = df_train
st.sidebar.info(f"π Training Records: {len(df):,}")
else:
df = df_test
st.sidebar.info(f"π Test Records: {len(df):,}")
# Analysis sections
analysis_type = st.sidebar.selectbox(
"Choose Analysis Type:",
[
"π Dataset Overview",
"π― Churn Analysis",
"π Geographic Analysis",
"π Usage Patterns",
"π° Revenue Analysis",
"π Correlation Analysis",
"π Advanced Insights"
]
)
if analysis_type == "π Dataset Overview":
dataset_overview(df)
elif analysis_type == "π― Churn Analysis":
churn_analysis(df)
elif analysis_type == "π Geographic Analysis":
geographic_analysis(df)
elif analysis_type == "π Usage Patterns":
usage_patterns(df)
elif analysis_type == "π° Revenue Analysis":
revenue_analysis(df)
elif analysis_type == "π Correlation Analysis":
correlation_analysis(df)
elif analysis_type == "π Advanced Insights":
advanced_insights(df)
def dataset_overview(df):
st.header("π Dataset Overview")
# Dataset description
st.markdown("""
### π About This Dataset
This is a **telecommunications customer churn dataset** that contains information about customers of a telecom company and whether they churned (cancelled their service) or were retained. The dataset is commonly used for predictive modeling to identify customers at risk of churning.
**Key Characteristics:**
- **Domain**: Telecommunications industry
- **Target Variable**: `Churn` (True/False) - indicates if customer cancelled service
- **Time Period**: Historical customer data with usage patterns and service details
- **Geographic Coverage**: Multiple US states (51 unique states)
- **Use Case**: Customer retention analysis, churn prediction modeling, and business intelligence
**Feature Categories:**
- π **Demographics**: State, account length, area code
- π **Service Plans**: International calling plan, voice mail plan
- π **Usage Patterns**: Day/evening/night/international minutes, calls, and charges
- π§ **Service Interactions**: Customer service call frequency
- π° **Billing**: Detailed breakdown of charges by time period and service type
This dataset enables analysis of customer behavior patterns, identification of churn risk factors, and development of retention strategies.
""")
st.markdown("---")
# Basic info
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Records", f"{len(df):,}")
with col2:
st.metric("Total Features", len(df.columns))
with col3:
if 'Churn' in df.columns:
churn_rate = (df['Churn'] == True).mean() * 100
st.metric("Churn Rate", f"{churn_rate:.1f}%")
else:
st.metric("Churn Rate", "N/A")
with col4:
if 'State' in df.columns:
st.metric("Unique States", df['State'].nunique())
else:
st.metric("Unique States", "N/A")
# Dataset structure
st.subheader("π Dataset Structure")
col1, col2 = st.columns(2)
with col1:
st.write("**Data Types:**")
data_types = df.dtypes.value_counts()
# Convert index to string to avoid JSON serialization issues
fig = px.pie(
values=data_types.values,
names=[str(dtype) for dtype in data_types.index],
title="Distribution of Data Types"
)
st.plotly_chart(fig, use_container_width=True)
with col2:
st.write("**Missing Values:**")
missing_data = df.isnull().sum()
if missing_data.sum() == 0:
st.success("β
No missing values found!")
else:
st.write(missing_data[missing_data > 0])
# Sample data
st.subheader("π Sample Data")
st.dataframe(df.head(10), use_container_width=True)
# Statistical summary
st.subheader("π Statistical Summary")
st.dataframe(df.describe(), use_container_width=True)
def churn_analysis(df):
st.header("π― Churn Analysis")
# Check if Churn column exists
if 'Churn' not in df.columns:
st.error("'Churn' column not found in the dataset. Please check your data.")
return
# Churn distribution
col1, col2 = st.columns(2)
with col1:
churn_counts = df['Churn'].value_counts()
fig = px.pie(
values=churn_counts.values,
names=['Retained', 'Churned'],
title="Overall Churn Distribution",
color_discrete_sequence=['lightgreen', 'lightcoral']
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Churn by categorical variables
categorical_vars = ['International plan', 'Voice mail plan']
selected_var = st.selectbox("Select categorical variable:", categorical_vars)
churn_by_cat = df.groupby([selected_var, 'Churn']).size().unstack()
churn_rate_cat = df.groupby(selected_var)['Churn'].mean() * 100
fig = px.bar(
x=churn_rate_cat.index,
y=churn_rate_cat.values,
title=f"Churn Rate by {selected_var}",
labels={'x': selected_var, 'y': 'Churn Rate (%)'},
color=churn_rate_cat.values,
color_continuous_scale='Reds'
)
st.plotly_chart(fig, use_container_width=True)
# Churn by numerical variables
st.subheader("π Churn Analysis by Numerical Features")
numerical_vars = [
'Account length', 'Total day minutes', 'Total day calls', 'Total day charge',
'Total eve minutes', 'Total eve calls', 'Total eve charge',
'Total night minutes', 'Total night calls', 'Total night charge',
'Total intl minutes', 'Total intl calls', 'Total intl charge',
'Customer service calls'
]
selected_num_var = st.selectbox("Select numerical variable:", numerical_vars)
col1, col2 = st.columns(2)
with col1:
# Box plot
fig = px.box(
df, x='Churn', y=selected_num_var,
title=f"{selected_num_var} Distribution by Churn Status",
color='Churn',
color_discrete_sequence=['lightgreen', 'lightcoral']
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Histogram
fig = px.histogram(
df, x=selected_num_var, color='Churn',
title=f"{selected_num_var} Distribution",
marginal="box",
color_discrete_sequence=['lightgreen', 'lightcoral']
)
st.plotly_chart(fig, use_container_width=True)
def geographic_analysis(df):
st.header("π Geographic Analysis")
# Check required columns
required_cols = ['State', 'Churn']
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
st.error(f"Required columns missing: {missing_cols}")
return
# State-wise analysis
state_analysis = df.groupby('State').agg({
'Churn': ['count', 'sum', 'mean'],
'Total day charge': 'mean',
'Total eve charge': 'mean',
'Total night charge': 'mean',
'Total intl charge': 'mean'
}).round(2)
state_analysis.columns = ['Total_Customers', 'Churned_Customers', 'Churn_Rate',
'Avg_Day_Charge', 'Avg_Eve_Charge', 'Avg_Night_Charge', 'Avg_Intl_Charge']
state_analysis = state_analysis.reset_index()
col1, col2 = st.columns(2)
with col1:
# Churn rate by state
fig = px.choropleth(
state_analysis,
locations='State',
color='Churn_Rate',
hover_name='State',
hover_data=['Total_Customers', 'Churned_Customers'],
locationmode='USA-states',
title="Churn Rate by State",
color_continuous_scale='Reds'
)
fig.update_layout(geo_scope="usa")
st.plotly_chart(fig, use_container_width=True)
with col2:
# Top 10 states by churn rate
top_churn_states = state_analysis.nlargest(10, 'Churn_Rate')
fig = px.bar(
top_churn_states,
x='Churn_Rate',
y='State',
orientation='h',
title="Top 10 States by Churn Rate",
color='Churn_Rate',
color_continuous_scale='Reds'
)
st.plotly_chart(fig, use_container_width=True)
# Area code analysis
st.subheader("π Area Code Analysis")
area_code_analysis = df.groupby('Area code').agg({
'Churn': ['count', 'mean'],
'Total day charge': 'mean'
}).round(2)
area_code_analysis.columns = ['Total_Customers', 'Churn_Rate', 'Avg_Day_Charge']
area_code_analysis = area_code_analysis.reset_index()
fig = px.bar(
area_code_analysis,
x='Area code',
y='Churn_Rate',
title="Churn Rate by Area Code",
color='Churn_Rate',
color_continuous_scale='Reds',
hover_data=['Total_Customers']
)
st.plotly_chart(fig, use_container_width=True)
def usage_patterns(df):
st.header("π Usage Patterns Analysis")
# Check if Churn column exists
if 'Churn' not in df.columns:
st.error("'Churn' column not found in the dataset.")
return
# Time-based usage analysis
usage_metrics = ['Total day minutes', 'Total eve minutes', 'Total night minutes', 'Total intl minutes']
col1, col2 = st.columns(2)
with col1:
# Usage patterns by churn
usage_by_churn = df.groupby('Churn')[usage_metrics].mean()
fig = go.Figure()
for metric in usage_metrics:
fig.add_trace(go.Bar(
name=metric.replace('Total ', '').replace(' minutes', ''),
x=['Retained', 'Churned'],
y=[usage_by_churn.loc[False, metric], usage_by_churn.loc[True, metric]]
))
fig.update_layout(
title="Average Usage Patterns by Churn Status",
xaxis_title="Customer Status",
yaxis_title="Average Minutes",
barmode='group'
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Call frequency analysis
call_metrics = ['Total day calls', 'Total eve calls', 'Total night calls', 'Total intl calls']
call_by_churn = df.groupby('Churn')[call_metrics].mean()
fig = go.Figure()
for metric in call_metrics:
fig.add_trace(go.Bar(
name=metric.replace('Total ', '').replace(' calls', ''),
x=['Retained', 'Churned'],
y=[call_by_churn.loc[False, metric], call_by_churn.loc[True, metric]]
))
fig.update_layout(
title="Average Call Frequency by Churn Status",
xaxis_title="Customer Status",
yaxis_title="Average Number of Calls",
barmode='group'
)
st.plotly_chart(fig, use_container_width=True)
# Customer service calls analysis
st.subheader("π§ Customer Service Analysis")
col1, col2 = st.columns(2)
with col1:
cs_calls_churn = df.groupby('Customer service calls')['Churn'].agg(['count', 'sum', 'mean']).reset_index()
cs_calls_churn['churn_rate'] = cs_calls_churn['mean'] * 100
fig = px.bar(
cs_calls_churn,
x='Customer service calls',
y='churn_rate',
title="Churn Rate by Number of Customer Service Calls",
color='churn_rate',
color_continuous_scale='Reds',
hover_data=['count']
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Distribution of customer service calls
fig = px.histogram(
df,
x='Customer service calls',
color='Churn',
title="Distribution of Customer Service Calls",
color_discrete_sequence=['lightgreen', 'lightcoral']
)
st.plotly_chart(fig, use_container_width=True)
def revenue_analysis(df):
st.header("π° Revenue Analysis")
# Check if Churn column exists
if 'Churn' not in df.columns:
st.error("'Churn' column not found in the dataset.")
return
# Calculate total revenue per customer
df['Total_Revenue'] = (df['Total day charge'] + df['Total eve charge'] +
df['Total night charge'] + df['Total intl charge'])
col1, col2 = st.columns(2)
with col1:
# Revenue by churn status
revenue_by_churn = df.groupby('Churn')['Total_Revenue'].agg(['mean', 'median', 'std']).round(2)
fig = px.bar(
x=['Retained', 'Churned'],
y=[revenue_by_churn.loc[False, 'mean'], revenue_by_churn.loc[True, 'mean']],
title="Average Revenue by Churn Status",
color=['Retained', 'Churned'],
color_discrete_sequence=['lightgreen', 'lightcoral']
)
fig.update_layout(yaxis_title="Average Revenue ($)")
st.plotly_chart(fig, use_container_width=True)
with col2:
# Revenue distribution
fig = px.box(
df,
x='Churn',
y='Total_Revenue',
title="Revenue Distribution by Churn Status",
color='Churn',
color_discrete_sequence=['lightgreen', 'lightcoral']
)
st.plotly_chart(fig, use_container_width=True)
# Revenue breakdown analysis
st.subheader("π Revenue Breakdown")
revenue_components = ['Total day charge', 'Total eve charge', 'Total night charge', 'Total intl charge']
col1, col2 = st.columns(2)
with col1:
# Average revenue components
avg_components = df[revenue_components].mean()
fig = px.pie(
values=avg_components.values,
names=[comp.replace('Total ', '').replace(' charge', '') for comp in revenue_components],
title="Average Revenue Composition"
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Revenue components by churn
components_by_churn = df.groupby('Churn')[revenue_components].mean()
fig = go.Figure()
for component in revenue_components:
fig.add_trace(go.Bar(
name=component.replace('Total ', '').replace(' charge', ''),
x=['Retained', 'Churned'],
y=[components_by_churn.loc[False, component], components_by_churn.loc[True, component]]
))
fig.update_layout(
title="Revenue Components by Churn Status",
xaxis_title="Customer Status",
yaxis_title="Average Charge ($)",
barmode='group'
)
st.plotly_chart(fig, use_container_width=True)
def correlation_analysis(df):
st.header("π Correlation Analysis")
# Check if Churn column exists
if 'Churn' not in df.columns:
st.error("'Churn' column not found in the dataset.")
return
# Select numerical columns for correlation
numerical_cols = df.select_dtypes(include=[np.number]).columns.tolist()
if 'Dataset' in numerical_cols:
numerical_cols.remove('Dataset')
# Convert boolean to numerical for correlation
df_corr = df.copy()
df_corr['Churn'] = df_corr['Churn'].astype(int)
df_corr['International plan'] = (df_corr['International plan'] == 'Yes').astype(int)
df_corr['Voice mail plan'] = (df_corr['Voice mail plan'] == 'Yes').astype(int)
# Add converted columns to numerical_cols for correlation
correlation_cols = numerical_cols.copy()
if 'Churn' not in correlation_cols:
correlation_cols.append('Churn')
if 'International plan' in df_corr.columns and 'International plan' not in correlation_cols:
correlation_cols.append('International plan')
if 'Voice mail plan' in df_corr.columns and 'Voice mail plan' not in correlation_cols:
correlation_cols.append('Voice mail plan')
# Calculate correlation matrix
corr_matrix = df_corr[correlation_cols].corr()
col1, col2 = st.columns(2)
with col1:
# Correlation heatmap
fig = px.imshow(
corr_matrix,
title="Feature Correlation Heatmap",
color_continuous_scale='RdBu_r',
aspect="auto"
)
fig.update_layout(width=600, height=600)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Correlation with churn
if 'Churn' in corr_matrix.columns:
churn_corr = corr_matrix['Churn'].abs().sort_values(ascending=False)[1:] # Exclude self-correlation
fig = px.bar(
x=churn_corr.values,
y=churn_corr.index,
orientation='h',
title="Features Most Correlated with Churn",
color=churn_corr.values,
color_continuous_scale='Reds'
)
st.plotly_chart(fig, use_container_width=True)
else:
st.error("Churn column not found in correlation matrix.")
# Top correlations
st.subheader("π Key Correlations")
if 'Churn' in corr_matrix.columns:
# Find top positive and negative correlations with churn
churn_corr_full = corr_matrix['Churn'].sort_values(ascending=False)
col1, col2 = st.columns(2)
with col1:
st.write("**Top Positive Correlations with Churn:**")
top_positive = churn_corr_full[churn_corr_full > 0][1:6] # Top 5, excluding self
if len(top_positive) > 0:
for feature, corr in top_positive.items():
st.write(f"β’ {feature}: {corr:.3f}")
else:
st.write("No positive correlations found.")
with col2:
st.write("**Top Negative Correlations with Churn:**")
top_negative = churn_corr_full[churn_corr_full < 0][-5:] # Bottom 5
if len(top_negative) > 0:
for feature, corr in top_negative.items():
st.write(f"β’ {feature}: {corr:.3f}")
else:
st.write("No negative correlations found.")
else:
st.warning("Cannot display correlation insights without Churn column in correlation matrix.")
def advanced_insights(df):
st.header("π Advanced Insights")
# Check if Churn column exists
if 'Churn' not in df.columns:
st.error("'Churn' column not found in the dataset.")
return
# Customer segments analysis
st.subheader("π₯ Customer Segmentation")
# Calculate total usage and revenue
df['Total_Usage'] = (df['Total day minutes'] + df['Total eve minutes'] +
df['Total night minutes'] + df['Total intl minutes'])
df['Total_Revenue'] = (df['Total day charge'] + df['Total eve charge'] +
df['Total night charge'] + df['Total intl charge'])
# Create usage vs revenue scatter plot
fig = px.scatter(
df,
x='Total_Usage',
y='Total_Revenue',
color='Churn',
title="Customer Segmentation: Usage vs Revenue",
labels={'Total_Usage': 'Total Usage (minutes)', 'Total_Revenue': 'Total Revenue ($)'},
color_discrete_sequence=['lightgreen', 'lightcoral'],
opacity=0.6
)
st.plotly_chart(fig, use_container_width=True)
# High-risk customer identification
st.subheader("β οΈ High-Risk Customer Analysis")
# Identify patterns in churned customers
churned_customers = df[df['Churn'] == True]
col1, col2 = st.columns(2)
with col1:
# Customer service calls for churned customers
cs_calls_dist = churned_customers['Customer service calls'].value_counts().sort_index()
fig = px.bar(
x=cs_calls_dist.index,
y=cs_calls_dist.values,
title="Customer Service Calls Distribution (Churned Customers)",
labels={'x': 'Number of CS Calls', 'y': 'Number of Customers'},
color=cs_calls_dist.values,
color_continuous_scale='Reds'
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# Account length distribution for churned customers
fig = px.histogram(
churned_customers,
x='Account length',
title="Account Length Distribution (Churned Customers)",
color_discrete_sequence=['lightcoral']
)
st.plotly_chart(fig, use_container_width=True)
# Plan analysis
st.subheader("π Plan Analysis")
plan_analysis = df.groupby(['International plan', 'Voice mail plan']).agg({
'Churn': ['count', 'sum', 'mean']
}).round(3)
plan_analysis.columns = ['Total_Customers', 'Churned_Customers', 'Churn_Rate']
plan_analysis = plan_analysis.reset_index()
plan_analysis['Plan_Combination'] = (plan_analysis['International plan'] + ' Intl, ' +
plan_analysis['Voice mail plan'] + ' VM')
fig = px.bar(
plan_analysis,
x='Plan_Combination',
y='Churn_Rate',
title="Churn Rate by Plan Combinations",
color='Churn_Rate',
color_continuous_scale='Reds',
hover_data=['Total_Customers']
)
fig.update_xaxes(tickangle=45)
st.plotly_chart(fig, use_container_width=True)
# Key insights summary
st.subheader("π‘ Key Insights Summary")
try:
insights = []
# Overall churn rate
if 'Churn' in df.columns:
churn_rate = (df['Churn'] == True).mean() * 100
insights.append(f"π Overall churn rate: {churn_rate:.1f}%")
# Customer service calls analysis
if 'Customer service calls' in df.columns and 'Churn' in df.columns:
high_service_calls = df[df['Customer service calls'] >= 4]
if len(high_service_calls) > 0:
high_cs_churn_rate = high_service_calls['Churn'].mean() * 100
insights.append(f"π Customers with 4+ service calls have {high_cs_churn_rate:.1f}% churn rate")
# International plan analysis
if 'International plan' in df.columns and 'Churn' in df.columns:
intl_customers = df[df['International plan'] == 'Yes']
if len(intl_customers) > 0:
intl_churn_rate = intl_customers['Churn'].mean() * 100
insights.append(f"π International plan customers have {intl_churn_rate:.1f}% churn rate")
# Voice mail plan analysis
if 'Voice mail plan' in df.columns and 'Churn' in df.columns:
vm_customers = df[df['Voice mail plan'] == 'Yes']
if len(vm_customers) > 0:
vm_churn_rate = vm_customers['Churn'].mean() * 100
insights.append(f"π§ Voice mail plan customers have {vm_churn_rate:.1f}% churn rate")
# Revenue analysis
if 'Total_Revenue' in df.columns and 'Churn' in df.columns:
churned_customers = df[df['Churn'] == True]
if len(churned_customers) > 0:
avg_revenue_churned = churned_customers['Total_Revenue'].mean()
insights.append(f"π° Average revenue per churned customer: ${avg_revenue_churned:.2f}")
# Account length analysis
if 'Account length' in df.columns and 'Churn' in df.columns:
churned_customers = df[df['Churn'] == True]
if len(churned_customers) > 0:
avg_account_length = churned_customers['Account length'].mean()
insights.append(f"β° Average account length of churned customers: {avg_account_length:.0f} days")
# Display insights
for insight in insights:
st.info(insight)
if not insights:
st.warning("No insights could be generated due to missing required columns.")
except Exception as e:
st.error(f"Error generating insights: {str(e)}")
st.warning("Please check that all required columns are present in your dataset.")
if __name__ == "__main__":
main() |