import streamlit as st import pandas as pd import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import numpy as np import seaborn as sns import matplotlib.pyplot as plt # Set page config st.set_page_config( page_title="Customer Churn Analysis", page_icon="📊", layout="wide", initial_sidebar_state="expanded" ) @st.cache_data def load_data(): """Load and combine the churn datasets""" try: df1 = pd.read_csv('churn-bigml-20.csv') df2 = pd.read_csv('churn-bigml-80.csv') # Add dataset identifier df1['Dataset'] = 'Test (20%)' df2['Dataset'] = 'Train (80%)' # Combine datasets df_combined = pd.concat([df1, df2], ignore_index=True) return df1, df2, df_combined except Exception as e: st.error(f"Error loading data: {str(e)}") return None, None, None def main(): st.title("📊 Customer Churn Analysis - Exploratory Data Analysis") st.markdown("---") # Load data df_test, df_train, df_combined = load_data() # Check if data loading was successful if df_test is None or df_train is None or df_combined is None: st.error("Failed to load data. Please check the CSV files exist and are properly formatted.") return # Sidebar st.sidebar.title("📋 Analysis Options") # Dataset selection dataset_option = st.sidebar.selectbox( "Select Dataset:", ["Combined Dataset", "Training Set (80%)", "Test Set (20%)"] ) if dataset_option == "Combined Dataset": df = df_combined st.sidebar.info(f"📈 Total Records: {len(df):,}") elif dataset_option == "Training Set (80%)": df = df_train st.sidebar.info(f"📈 Training Records: {len(df):,}") else: df = df_test st.sidebar.info(f"📈 Test Records: {len(df):,}") # Analysis sections analysis_type = st.sidebar.selectbox( "Choose Analysis Type:", [ "📋 Dataset Overview", "🎯 Churn Analysis", "📍 Geographic Analysis", "📞 Usage Patterns", "💰 Revenue Analysis", "🔗 Correlation Analysis", "📊 Advanced Insights" ] ) if analysis_type == "📋 Dataset Overview": dataset_overview(df) elif analysis_type == "🎯 Churn Analysis": churn_analysis(df) elif analysis_type == "📍 Geographic Analysis": geographic_analysis(df) elif analysis_type == "📞 Usage Patterns": usage_patterns(df) elif analysis_type == "💰 Revenue Analysis": revenue_analysis(df) elif analysis_type == "🔗 Correlation Analysis": correlation_analysis(df) elif analysis_type == "📊 Advanced Insights": advanced_insights(df) def dataset_overview(df): st.header("📋 Dataset Overview") # Dataset description st.markdown(""" ### 📞 About This Dataset This is a **telecommunications customer churn dataset** that contains information about customers of a telecom company and whether they churned (cancelled their service) or were retained. The dataset is commonly used for predictive modeling to identify customers at risk of churning. **Key Characteristics:** - **Domain**: Telecommunications industry - **Target Variable**: `Churn` (True/False) - indicates if customer cancelled service - **Time Period**: Historical customer data with usage patterns and service details - **Geographic Coverage**: Multiple US states (51 unique states) - **Use Case**: Customer retention analysis, churn prediction modeling, and business intelligence **Feature Categories:** - 🏠 **Demographics**: State, account length, area code - 📋 **Service Plans**: International calling plan, voice mail plan - 📞 **Usage Patterns**: Day/evening/night/international minutes, calls, and charges - 🎧 **Service Interactions**: Customer service call frequency - 💰 **Billing**: Detailed breakdown of charges by time period and service type This dataset enables analysis of customer behavior patterns, identification of churn risk factors, and development of retention strategies. """) st.markdown("---") # Basic info col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Total Records", f"{len(df):,}") with col2: st.metric("Total Features", len(df.columns)) with col3: if 'Churn' in df.columns: churn_rate = (df['Churn'] == True).mean() * 100 st.metric("Churn Rate", f"{churn_rate:.1f}%") else: st.metric("Churn Rate", "N/A") with col4: if 'State' in df.columns: st.metric("Unique States", df['State'].nunique()) else: st.metric("Unique States", "N/A") # Dataset structure st.subheader("📊 Dataset Structure") col1, col2 = st.columns(2) with col1: st.write("**Data Types:**") data_types = df.dtypes.value_counts() # Convert index to string to avoid JSON serialization issues fig = px.pie( values=data_types.values, names=[str(dtype) for dtype in data_types.index], title="Distribution of Data Types" ) st.plotly_chart(fig, use_container_width=True) with col2: st.write("**Missing Values:**") missing_data = df.isnull().sum() if missing_data.sum() == 0: st.success("✅ No missing values found!") else: st.write(missing_data[missing_data > 0]) # Sample data st.subheader("🔍 Sample Data") st.dataframe(df.head(10), use_container_width=True) # Statistical summary st.subheader("📈 Statistical Summary") st.dataframe(df.describe(), use_container_width=True) def churn_analysis(df): st.header("🎯 Churn Analysis") # Check if Churn column exists if 'Churn' not in df.columns: st.error("'Churn' column not found in the dataset. Please check your data.") return # Churn distribution col1, col2 = st.columns(2) with col1: churn_counts = df['Churn'].value_counts() fig = px.pie( values=churn_counts.values, names=['Retained', 'Churned'], title="Overall Churn Distribution", color_discrete_sequence=['lightgreen', 'lightcoral'] ) st.plotly_chart(fig, use_container_width=True) with col2: # Churn by categorical variables categorical_vars = ['International plan', 'Voice mail plan'] selected_var = st.selectbox("Select categorical variable:", categorical_vars) churn_by_cat = df.groupby([selected_var, 'Churn']).size().unstack() churn_rate_cat = df.groupby(selected_var)['Churn'].mean() * 100 fig = px.bar( x=churn_rate_cat.index, y=churn_rate_cat.values, title=f"Churn Rate by {selected_var}", labels={'x': selected_var, 'y': 'Churn Rate (%)'}, color=churn_rate_cat.values, color_continuous_scale='Reds' ) st.plotly_chart(fig, use_container_width=True) # Churn by numerical variables st.subheader("📊 Churn Analysis by Numerical Features") numerical_vars = [ 'Account length', 'Total day minutes', 'Total day calls', 'Total day charge', 'Total eve minutes', 'Total eve calls', 'Total eve charge', 'Total night minutes', 'Total night calls', 'Total night charge', 'Total intl minutes', 'Total intl calls', 'Total intl charge', 'Customer service calls' ] selected_num_var = st.selectbox("Select numerical variable:", numerical_vars) col1, col2 = st.columns(2) with col1: # Box plot fig = px.box( df, x='Churn', y=selected_num_var, title=f"{selected_num_var} Distribution by Churn Status", color='Churn', color_discrete_sequence=['lightgreen', 'lightcoral'] ) st.plotly_chart(fig, use_container_width=True) with col2: # Histogram fig = px.histogram( df, x=selected_num_var, color='Churn', title=f"{selected_num_var} Distribution", marginal="box", color_discrete_sequence=['lightgreen', 'lightcoral'] ) st.plotly_chart(fig, use_container_width=True) def geographic_analysis(df): st.header("📍 Geographic Analysis") # Check required columns required_cols = ['State', 'Churn'] missing_cols = [col for col in required_cols if col not in df.columns] if missing_cols: st.error(f"Required columns missing: {missing_cols}") return # State-wise analysis state_analysis = df.groupby('State').agg({ 'Churn': ['count', 'sum', 'mean'], 'Total day charge': 'mean', 'Total eve charge': 'mean', 'Total night charge': 'mean', 'Total intl charge': 'mean' }).round(2) state_analysis.columns = ['Total_Customers', 'Churned_Customers', 'Churn_Rate', 'Avg_Day_Charge', 'Avg_Eve_Charge', 'Avg_Night_Charge', 'Avg_Intl_Charge'] state_analysis = state_analysis.reset_index() col1, col2 = st.columns(2) with col1: # Churn rate by state fig = px.choropleth( state_analysis, locations='State', color='Churn_Rate', hover_name='State', hover_data=['Total_Customers', 'Churned_Customers'], locationmode='USA-states', title="Churn Rate by State", color_continuous_scale='Reds' ) fig.update_layout(geo_scope="usa") st.plotly_chart(fig, use_container_width=True) with col2: # Top 10 states by churn rate top_churn_states = state_analysis.nlargest(10, 'Churn_Rate') fig = px.bar( top_churn_states, x='Churn_Rate', y='State', orientation='h', title="Top 10 States by Churn Rate", color='Churn_Rate', color_continuous_scale='Reds' ) st.plotly_chart(fig, use_container_width=True) # Area code analysis st.subheader("📞 Area Code Analysis") area_code_analysis = df.groupby('Area code').agg({ 'Churn': ['count', 'mean'], 'Total day charge': 'mean' }).round(2) area_code_analysis.columns = ['Total_Customers', 'Churn_Rate', 'Avg_Day_Charge'] area_code_analysis = area_code_analysis.reset_index() fig = px.bar( area_code_analysis, x='Area code', y='Churn_Rate', title="Churn Rate by Area Code", color='Churn_Rate', color_continuous_scale='Reds', hover_data=['Total_Customers'] ) st.plotly_chart(fig, use_container_width=True) def usage_patterns(df): st.header("📞 Usage Patterns Analysis") # Check if Churn column exists if 'Churn' not in df.columns: st.error("'Churn' column not found in the dataset.") return # Time-based usage analysis usage_metrics = ['Total day minutes', 'Total eve minutes', 'Total night minutes', 'Total intl minutes'] col1, col2 = st.columns(2) with col1: # Usage patterns by churn usage_by_churn = df.groupby('Churn')[usage_metrics].mean() fig = go.Figure() for metric in usage_metrics: fig.add_trace(go.Bar( name=metric.replace('Total ', '').replace(' minutes', ''), x=['Retained', 'Churned'], y=[usage_by_churn.loc[False, metric], usage_by_churn.loc[True, metric]] )) fig.update_layout( title="Average Usage Patterns by Churn Status", xaxis_title="Customer Status", yaxis_title="Average Minutes", barmode='group' ) st.plotly_chart(fig, use_container_width=True) with col2: # Call frequency analysis call_metrics = ['Total day calls', 'Total eve calls', 'Total night calls', 'Total intl calls'] call_by_churn = df.groupby('Churn')[call_metrics].mean() fig = go.Figure() for metric in call_metrics: fig.add_trace(go.Bar( name=metric.replace('Total ', '').replace(' calls', ''), x=['Retained', 'Churned'], y=[call_by_churn.loc[False, metric], call_by_churn.loc[True, metric]] )) fig.update_layout( title="Average Call Frequency by Churn Status", xaxis_title="Customer Status", yaxis_title="Average Number of Calls", barmode='group' ) st.plotly_chart(fig, use_container_width=True) # Customer service calls analysis st.subheader("🎧 Customer Service Analysis") col1, col2 = st.columns(2) with col1: cs_calls_churn = df.groupby('Customer service calls')['Churn'].agg(['count', 'sum', 'mean']).reset_index() cs_calls_churn['churn_rate'] = cs_calls_churn['mean'] * 100 fig = px.bar( cs_calls_churn, x='Customer service calls', y='churn_rate', title="Churn Rate by Number of Customer Service Calls", color='churn_rate', color_continuous_scale='Reds', hover_data=['count'] ) st.plotly_chart(fig, use_container_width=True) with col2: # Distribution of customer service calls fig = px.histogram( df, x='Customer service calls', color='Churn', title="Distribution of Customer Service Calls", color_discrete_sequence=['lightgreen', 'lightcoral'] ) st.plotly_chart(fig, use_container_width=True) def revenue_analysis(df): st.header("💰 Revenue Analysis") # Check if Churn column exists if 'Churn' not in df.columns: st.error("'Churn' column not found in the dataset.") return # Calculate total revenue per customer df['Total_Revenue'] = (df['Total day charge'] + df['Total eve charge'] + df['Total night charge'] + df['Total intl charge']) col1, col2 = st.columns(2) with col1: # Revenue by churn status revenue_by_churn = df.groupby('Churn')['Total_Revenue'].agg(['mean', 'median', 'std']).round(2) fig = px.bar( x=['Retained', 'Churned'], y=[revenue_by_churn.loc[False, 'mean'], revenue_by_churn.loc[True, 'mean']], title="Average Revenue by Churn Status", color=['Retained', 'Churned'], color_discrete_sequence=['lightgreen', 'lightcoral'] ) fig.update_layout(yaxis_title="Average Revenue ($)") st.plotly_chart(fig, use_container_width=True) with col2: # Revenue distribution fig = px.box( df, x='Churn', y='Total_Revenue', title="Revenue Distribution by Churn Status", color='Churn', color_discrete_sequence=['lightgreen', 'lightcoral'] ) st.plotly_chart(fig, use_container_width=True) # Revenue breakdown analysis st.subheader("📊 Revenue Breakdown") revenue_components = ['Total day charge', 'Total eve charge', 'Total night charge', 'Total intl charge'] col1, col2 = st.columns(2) with col1: # Average revenue components avg_components = df[revenue_components].mean() fig = px.pie( values=avg_components.values, names=[comp.replace('Total ', '').replace(' charge', '') for comp in revenue_components], title="Average Revenue Composition" ) st.plotly_chart(fig, use_container_width=True) with col2: # Revenue components by churn components_by_churn = df.groupby('Churn')[revenue_components].mean() fig = go.Figure() for component in revenue_components: fig.add_trace(go.Bar( name=component.replace('Total ', '').replace(' charge', ''), x=['Retained', 'Churned'], y=[components_by_churn.loc[False, component], components_by_churn.loc[True, component]] )) fig.update_layout( title="Revenue Components by Churn Status", xaxis_title="Customer Status", yaxis_title="Average Charge ($)", barmode='group' ) st.plotly_chart(fig, use_container_width=True) def correlation_analysis(df): st.header("🔗 Correlation Analysis") # Check if Churn column exists if 'Churn' not in df.columns: st.error("'Churn' column not found in the dataset.") return # Select numerical columns for correlation numerical_cols = df.select_dtypes(include=[np.number]).columns.tolist() if 'Dataset' in numerical_cols: numerical_cols.remove('Dataset') # Convert boolean to numerical for correlation df_corr = df.copy() df_corr['Churn'] = df_corr['Churn'].astype(int) df_corr['International plan'] = (df_corr['International plan'] == 'Yes').astype(int) df_corr['Voice mail plan'] = (df_corr['Voice mail plan'] == 'Yes').astype(int) # Add converted columns to numerical_cols for correlation correlation_cols = numerical_cols.copy() if 'Churn' not in correlation_cols: correlation_cols.append('Churn') if 'International plan' in df_corr.columns and 'International plan' not in correlation_cols: correlation_cols.append('International plan') if 'Voice mail plan' in df_corr.columns and 'Voice mail plan' not in correlation_cols: correlation_cols.append('Voice mail plan') # Calculate correlation matrix corr_matrix = df_corr[correlation_cols].corr() col1, col2 = st.columns(2) with col1: # Correlation heatmap fig = px.imshow( corr_matrix, title="Feature Correlation Heatmap", color_continuous_scale='RdBu_r', aspect="auto" ) fig.update_layout(width=600, height=600) st.plotly_chart(fig, use_container_width=True) with col2: # Correlation with churn if 'Churn' in corr_matrix.columns: churn_corr = corr_matrix['Churn'].abs().sort_values(ascending=False)[1:] # Exclude self-correlation fig = px.bar( x=churn_corr.values, y=churn_corr.index, orientation='h', title="Features Most Correlated with Churn", color=churn_corr.values, color_continuous_scale='Reds' ) st.plotly_chart(fig, use_container_width=True) else: st.error("Churn column not found in correlation matrix.") # Top correlations st.subheader("🔍 Key Correlations") if 'Churn' in corr_matrix.columns: # Find top positive and negative correlations with churn churn_corr_full = corr_matrix['Churn'].sort_values(ascending=False) col1, col2 = st.columns(2) with col1: st.write("**Top Positive Correlations with Churn:**") top_positive = churn_corr_full[churn_corr_full > 0][1:6] # Top 5, excluding self if len(top_positive) > 0: for feature, corr in top_positive.items(): st.write(f"• {feature}: {corr:.3f}") else: st.write("No positive correlations found.") with col2: st.write("**Top Negative Correlations with Churn:**") top_negative = churn_corr_full[churn_corr_full < 0][-5:] # Bottom 5 if len(top_negative) > 0: for feature, corr in top_negative.items(): st.write(f"• {feature}: {corr:.3f}") else: st.write("No negative correlations found.") else: st.warning("Cannot display correlation insights without Churn column in correlation matrix.") def advanced_insights(df): st.header("📊 Advanced Insights") # Check if Churn column exists if 'Churn' not in df.columns: st.error("'Churn' column not found in the dataset.") return # Customer segments analysis st.subheader("👥 Customer Segmentation") # Calculate total usage and revenue df['Total_Usage'] = (df['Total day minutes'] + df['Total eve minutes'] + df['Total night minutes'] + df['Total intl minutes']) df['Total_Revenue'] = (df['Total day charge'] + df['Total eve charge'] + df['Total night charge'] + df['Total intl charge']) # Create usage vs revenue scatter plot fig = px.scatter( df, x='Total_Usage', y='Total_Revenue', color='Churn', title="Customer Segmentation: Usage vs Revenue", labels={'Total_Usage': 'Total Usage (minutes)', 'Total_Revenue': 'Total Revenue ($)'}, color_discrete_sequence=['lightgreen', 'lightcoral'], opacity=0.6 ) st.plotly_chart(fig, use_container_width=True) # High-risk customer identification st.subheader("⚠️ High-Risk Customer Analysis") # Identify patterns in churned customers churned_customers = df[df['Churn'] == True] col1, col2 = st.columns(2) with col1: # Customer service calls for churned customers cs_calls_dist = churned_customers['Customer service calls'].value_counts().sort_index() fig = px.bar( x=cs_calls_dist.index, y=cs_calls_dist.values, title="Customer Service Calls Distribution (Churned Customers)", labels={'x': 'Number of CS Calls', 'y': 'Number of Customers'}, color=cs_calls_dist.values, color_continuous_scale='Reds' ) st.plotly_chart(fig, use_container_width=True) with col2: # Account length distribution for churned customers fig = px.histogram( churned_customers, x='Account length', title="Account Length Distribution (Churned Customers)", color_discrete_sequence=['lightcoral'] ) st.plotly_chart(fig, use_container_width=True) # Plan analysis st.subheader("📋 Plan Analysis") plan_analysis = df.groupby(['International plan', 'Voice mail plan']).agg({ 'Churn': ['count', 'sum', 'mean'] }).round(3) plan_analysis.columns = ['Total_Customers', 'Churned_Customers', 'Churn_Rate'] plan_analysis = plan_analysis.reset_index() plan_analysis['Plan_Combination'] = (plan_analysis['International plan'] + ' Intl, ' + plan_analysis['Voice mail plan'] + ' VM') fig = px.bar( plan_analysis, x='Plan_Combination', y='Churn_Rate', title="Churn Rate by Plan Combinations", color='Churn_Rate', color_continuous_scale='Reds', hover_data=['Total_Customers'] ) fig.update_xaxes(tickangle=45) st.plotly_chart(fig, use_container_width=True) # Key insights summary st.subheader("💡 Key Insights Summary") try: insights = [] # Overall churn rate if 'Churn' in df.columns: churn_rate = (df['Churn'] == True).mean() * 100 insights.append(f"📈 Overall churn rate: {churn_rate:.1f}%") # Customer service calls analysis if 'Customer service calls' in df.columns and 'Churn' in df.columns: high_service_calls = df[df['Customer service calls'] >= 4] if len(high_service_calls) > 0: high_cs_churn_rate = high_service_calls['Churn'].mean() * 100 insights.append(f"📞 Customers with 4+ service calls have {high_cs_churn_rate:.1f}% churn rate") # International plan analysis if 'International plan' in df.columns and 'Churn' in df.columns: intl_customers = df[df['International plan'] == 'Yes'] if len(intl_customers) > 0: intl_churn_rate = intl_customers['Churn'].mean() * 100 insights.append(f"🌍 International plan customers have {intl_churn_rate:.1f}% churn rate") # Voice mail plan analysis if 'Voice mail plan' in df.columns and 'Churn' in df.columns: vm_customers = df[df['Voice mail plan'] == 'Yes'] if len(vm_customers) > 0: vm_churn_rate = vm_customers['Churn'].mean() * 100 insights.append(f"📧 Voice mail plan customers have {vm_churn_rate:.1f}% churn rate") # Revenue analysis if 'Total_Revenue' in df.columns and 'Churn' in df.columns: churned_customers = df[df['Churn'] == True] if len(churned_customers) > 0: avg_revenue_churned = churned_customers['Total_Revenue'].mean() insights.append(f"💰 Average revenue per churned customer: ${avg_revenue_churned:.2f}") # Account length analysis if 'Account length' in df.columns and 'Churn' in df.columns: churned_customers = df[df['Churn'] == True] if len(churned_customers) > 0: avg_account_length = churned_customers['Account length'].mean() insights.append(f"⏰ Average account length of churned customers: {avg_account_length:.0f} days") # Display insights for insight in insights: st.info(insight) if not insights: st.warning("No insights could be generated due to missing required columns.") except Exception as e: st.error(f"Error generating insights: {str(e)}") st.warning("Please check that all required columns are present in your dataset.") if __name__ == "__main__": main()