File size: 4,238 Bytes
16f0ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# *****************************************************************************
#  Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions are met:
#      * Redistributions of source code must retain the above copyright
#        notice, this list of conditions and the following disclaimer.
#      * Redistributions in binary form must reproduce the above copyright
#        notice, this list of conditions and the following disclaimer in the
#        documentation and/or other materials provided with the distribution.
#      * Neither the name of the NVIDIA CORPORATION nor the
#        names of its contributors may be used to endorse or promote products
#        derived from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#  DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************\

import torch
import random
import common.layers as layers
from common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu


class MelAudioLoader(torch.utils.data.Dataset):
    """
        1) loads audio,text pairs
        2) computes mel-spectrograms from audio files.
    """

    def __init__(self,
                 dataset_path,
                 audiopaths_and_text,
                 segment_length,
                 n_mel_channels,
                 max_wav_value,
                 sampling_rate,
                 filter_length,
                 hop_length,
                 win_length,
                 mel_fmin,
                 mel_fmax,
                 args):
        self.audiopaths_and_text = load_filepaths_and_text(dataset_path, audiopaths_and_text)
        self.max_wav_value = max_wav_value
        self.sampling_rate = sampling_rate
        self.stft = layers.TacotronSTFT(
            filter_length, hop_length, win_length,
            n_mel_channels, sampling_rate, mel_fmin,
            mel_fmax)
        self.segment_length = segment_length
        random.seed(1234)
        random.shuffle(self.audiopaths_and_text)

    def get_mel_audio_pair(self, filename):
        audio, sampling_rate = load_wav_to_torch(filename)

        if sampling_rate != self.stft.sampling_rate:
            raise ValueError("{} {} SR doesn't match target {} SR".format(
                sampling_rate, self.stft.sampling_rate))

        # Take segment
        if audio.size(0) >= self.segment_length:
            max_audio_start = audio.size(0) - self.segment_length
            audio_start = random.randint(0, max_audio_start)
            audio = audio[audio_start:audio_start+self.segment_length]
        else:
            audio = torch.nn.functional.pad(
                audio, (0, self.segment_length - audio.size(0)), 'constant').data

        audio = audio / self.max_wav_value
        audio_norm = audio.unsqueeze(0)
        audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
        melspec = self.stft.mel_spectrogram(audio_norm)
        melspec = melspec.squeeze(0)

        return (melspec, audio, len(audio))

    def __getitem__(self, index):
        return self.get_mel_audio_pair(self.audiopaths_and_text[index][0])

    def __len__(self):
        return len(self.audiopaths_and_text)


def batch_to_gpu(batch):
    x, y, len_y = batch
    x = to_gpu(x).float()
    y = to_gpu(y).float()
    len_y = to_gpu(torch.sum(len_y))
    return ((x, y), y, len_y)