Spaces:
Running
Running
| # Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # MIT License | |
| # | |
| # Copyright (c) 2020 Jungil Kong | |
| # | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy | |
| # of this software and associated documentation files (the "Software"), to deal | |
| # in the Software without restriction, including without limitation the rights | |
| # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| # copies of the Software, and to permit persons to whom the Software is | |
| # furnished to do so, subject to the following conditions: | |
| # | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
| # SOFTWARE. | |
| # The following functions/classes were based on code from https://github.com/jik876/hifi-gan: | |
| # ResBlock1, ResBlock2, Generator, DiscriminatorP, DiscriminatorS, MultiScaleDiscriminator, | |
| # MultiPeriodDiscriminator, feature_loss, discriminator_loss, generator_loss, | |
| # init_weights, get_padding | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d | |
| from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm | |
| from common.stft import STFT | |
| from common.utils import AttrDict, init_weights, get_padding | |
| LRELU_SLOPE = 0.1 | |
| class NoAMPConv1d(Conv1d): | |
| def __init__(self, *args, no_amp=False, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.no_amp = no_amp | |
| def _cast(self, x, dtype): | |
| if isinstance(x, (list, tuple)): | |
| return [self._cast(t, dtype) for t in x] | |
| else: | |
| return x.to(dtype) | |
| def forward(self, *args): | |
| if not self.no_amp: | |
| return super().forward(*args) | |
| with torch.cuda.amp.autocast(enabled=False): | |
| return self._cast( | |
| super().forward(*self._cast(args, torch.float)), args[0].dtype) | |
| class ResBlock1(nn.Module): | |
| __constants__ = ['lrelu_slope'] | |
| def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3, 5)): | |
| super().__init__() | |
| self.conf = conf | |
| self.lrelu_slope = LRELU_SLOPE | |
| ch, ks = channels, kernel_size | |
| self.convs1 = nn.Sequential(*[ | |
| weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[0]), dilation[0])), | |
| weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[1]), dilation[1])), | |
| weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[2]), dilation[2])), | |
| ]) | |
| self.convs2 = nn.Sequential(*[ | |
| weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), | |
| weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), | |
| weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), | |
| ]) | |
| self.convs1.apply(init_weights) | |
| self.convs2.apply(init_weights) | |
| def forward(self, x): | |
| for c1, c2 in zip(self.convs1, self.convs2): | |
| xt = F.leaky_relu(x, self.lrelu_slope) | |
| xt = c1(xt) | |
| xt = F.leaky_relu(xt, self.lrelu_slope) | |
| xt = c2(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs1: | |
| remove_weight_norm(l) | |
| for l in self.convs2: | |
| remove_weight_norm(l) | |
| class ResBlock2(nn.Module): | |
| __constants__ = ['lrelu_slope'] | |
| def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3)): | |
| super().__init__() | |
| self.conf = conf | |
| ch, ks = channels, kernel_size | |
| self.convs = nn.ModuleList([ | |
| weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[0]), dilation[0])), | |
| weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[1]), dilation[1])), | |
| ]) | |
| self.convs.apply(init_weights) | |
| def forward(self, x): | |
| for c in self.convs: | |
| xt = F.leaky_relu(x, self.lrelu_slope) | |
| xt = c(xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs: | |
| remove_weight_norm(l) | |
| class Generator(nn.Module): | |
| __constants__ = ['lrelu_slope', 'num_kernels', 'num_upsamples'] | |
| def __init__(self, conf): | |
| super().__init__() | |
| conf = AttrDict(conf) | |
| self.conf = conf | |
| self.num_kernels = len(conf.resblock_kernel_sizes) | |
| self.num_upsamples = len(conf.upsample_rates) | |
| self.conv_pre = weight_norm( | |
| Conv1d(80, conf.upsample_initial_channel, 7, 1, padding=3)) | |
| self.lrelu_slope = LRELU_SLOPE | |
| resblock = ResBlock1 if conf.resblock == '1' else ResBlock2 | |
| self.ups = [] | |
| for i, (u, k) in enumerate(zip(conf.upsample_rates, | |
| conf.upsample_kernel_sizes)): | |
| self.ups.append(weight_norm( | |
| ConvTranspose1d(conf.upsample_initial_channel // (2 ** i), | |
| conf.upsample_initial_channel // (2 ** (i + 1)), | |
| k, u, padding=(k-u)//2))) | |
| self.ups = nn.Sequential(*self.ups) | |
| self.resblocks = [] | |
| for i in range(len(self.ups)): | |
| resblock_list = [] | |
| ch = conf.upsample_initial_channel // (2 ** (i + 1)) | |
| for j, (k, d) in enumerate(zip(conf.resblock_kernel_sizes, | |
| conf.resblock_dilation_sizes)): | |
| resblock_list.append(resblock(conf, ch, k, d)) | |
| resblock_list = nn.Sequential(*resblock_list) | |
| self.resblocks.append(resblock_list) | |
| self.resblocks = nn.Sequential(*self.resblocks) | |
| self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | |
| self.ups.apply(init_weights) | |
| self.conv_post.apply(init_weights) | |
| def load_state_dict(self, state_dict, strict=True): | |
| # Fallback for old checkpoints (pre-ONNX fix) | |
| new_sd = {} | |
| for k, v in state_dict.items(): | |
| new_k = k | |
| if 'resblocks' in k: | |
| parts = k.split(".") | |
| # only do this is the checkpoint type is older | |
| if len(parts) == 5: | |
| layer = int(parts[1]) | |
| new_layer = f"{layer//3}.{layer%3}" | |
| new_k = f"resblocks.{new_layer}.{'.'.join(parts[2:])}" | |
| new_sd[new_k] = v | |
| # Fix for conv1d/conv2d/NHWC | |
| curr_sd = self.state_dict() | |
| for key in new_sd: | |
| len_diff = len(new_sd[key].size()) - len(curr_sd[key].size()) | |
| if len_diff == -1: | |
| new_sd[key] = new_sd[key].unsqueeze(-1) | |
| elif len_diff == 1: | |
| new_sd[key] = new_sd[key].squeeze(-1) | |
| super().load_state_dict(new_sd, strict=strict) | |
| def forward(self, x): | |
| x = self.conv_pre(x) | |
| for upsample_layer, resblock_group in zip(self.ups, self.resblocks): | |
| x = F.leaky_relu(x, self.lrelu_slope) | |
| x = upsample_layer(x) | |
| xs = 0 | |
| for resblock in resblock_group: | |
| xs += resblock(x) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x) | |
| x = self.conv_post(x) | |
| x = torch.tanh(x) | |
| return x | |
| def remove_weight_norm(self): | |
| print('HiFi-GAN: Removing weight norm.') | |
| for l in self.ups: | |
| remove_weight_norm(l) | |
| for group in self.resblocks: | |
| for block in group: | |
| block.remove_weight_norm() | |
| remove_weight_norm(self.conv_pre) | |
| remove_weight_norm(self.conv_post) | |
| class Denoiser(nn.Module): | |
| """ Removes model bias from audio produced with hifigan """ | |
| def __init__(self, hifigan, filter_length=1024, n_overlap=4, | |
| win_length=1024, mode='zeros', device="cpu", **infer_kw): | |
| super().__init__() | |
| self.stft = STFT(filter_length=filter_length, | |
| hop_length=int(filter_length/n_overlap), | |
| #win_length=win_length).cuda() # was like this | |
| win_length=win_length, device=device) | |
| for name, p in hifigan.named_parameters(): | |
| if name.endswith('.weight'): | |
| dtype = p.dtype | |
| device = p.device | |
| break | |
| mel_init = {'zeros': torch.zeros, 'normal': torch.randn}[mode] | |
| mel_input = mel_init((1, 80, 88), dtype=dtype, device=device) | |
| with torch.no_grad(): | |
| bias_audio = hifigan(mel_input, **infer_kw).float() | |
| if len(bias_audio.size()) > 2: | |
| bias_audio = bias_audio.squeeze(0) | |
| elif len(bias_audio.size()) < 2: | |
| bias_audio = bias_audio.unsqueeze(0) | |
| assert len(bias_audio.size()) == 2 | |
| bias_spec, _ = self.stft.transform(bias_audio) | |
| self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) | |
| def forward(self, audio, strength=0.1): | |
| audio_spec, audio_angles = self.stft.transform(audio.float()) | |
| audio_spec_denoised = audio_spec - self.bias_spec * strength | |
| audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) | |
| audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles) | |
| return audio_denoised | |
| class DiscriminatorP(nn.Module): | |
| def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
| super().__init__() | |
| self.period = period | |
| norm_f = spectral_norm if use_spectral_norm else weight_norm | |
| ks = kernel_size | |
| self.convs = nn.ModuleList([ | |
| norm_f(Conv2d(1, 32, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), | |
| norm_f(Conv2d(32, 128, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), | |
| norm_f(Conv2d(128, 512, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), | |
| norm_f(Conv2d(512, 1024, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), | |
| norm_f(Conv2d(1024, 1024, (ks, 1), 1, padding=(2, 0))), | |
| ]) | |
| self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
| def forward(self, x): | |
| fmap = [] | |
| # 1d to 2d | |
| b, c, t = x.shape | |
| if t % self.period != 0: # pad first | |
| n_pad = self.period - (t % self.period) | |
| x = F.pad(x, (0, n_pad), "reflect") | |
| t = t + n_pad | |
| x = x.view(b, c, t // self.period, self.period) | |
| for l in self.convs: | |
| x = l(x) | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| def share_params_of(self, dp): | |
| assert len(self.convs) == len(dp.convs) | |
| for c1, c2 in zip(self.convs, dp.convs): | |
| c1.weight = c2.weight | |
| c1.bias = c2.bias | |
| class MultiPeriodDiscriminator(nn.Module): | |
| def __init__(self, periods, concat_fwd=False): | |
| super().__init__() | |
| layers = [DiscriminatorP(p) for p in periods] | |
| self.discriminators = nn.ModuleList(layers) | |
| self.concat_fwd = concat_fwd | |
| def forward(self, y, y_hat): | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for i, d in enumerate(self.discriminators): | |
| if self.concat_fwd: | |
| y_ds, fmaps = d(concat_discr_input(y, y_hat)) | |
| y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps) | |
| else: | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| class DiscriminatorS(nn.Module): | |
| def __init__(self, use_spectral_norm=False, no_amp_grouped_conv=False): | |
| super().__init__() | |
| norm_f = spectral_norm if use_spectral_norm else weight_norm | |
| self.convs = nn.ModuleList([ | |
| norm_f(Conv1d(1, 128, 15, 1, padding=7)), | |
| norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), | |
| norm_f(NoAMPConv1d(128, 256, 41, 2, groups=16, padding=20, no_amp=no_amp_grouped_conv)), | |
| norm_f(NoAMPConv1d(256, 512, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)), | |
| norm_f(NoAMPConv1d(512, 1024, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)), | |
| norm_f(NoAMPConv1d(1024, 1024, 41, 1, groups=16, padding=20, no_amp=no_amp_grouped_conv)), | |
| norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
| ]) | |
| self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
| def forward(self, x): | |
| fmap = [] | |
| for l in self.convs: | |
| # x = l(x.unsqueeze(-1)).squeeze(-1) | |
| x = l(x) | |
| x = F.leaky_relu(x, LRELU_SLOPE) | |
| fmap.append(x) | |
| x = self.conv_post(x) | |
| fmap.append(x) | |
| x = torch.flatten(x, 1, -1) | |
| return x, fmap | |
| class MultiScaleDiscriminator(nn.Module): | |
| def __init__(self, no_amp_grouped_conv=False, concat_fwd=False): | |
| super().__init__() | |
| self.discriminators = nn.ModuleList([ | |
| DiscriminatorS(use_spectral_norm=True, no_amp_grouped_conv=no_amp_grouped_conv), | |
| DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv), | |
| DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv), | |
| ]) | |
| self.meanpools = nn.ModuleList([ | |
| AvgPool1d(4, 2, padding=1), | |
| AvgPool1d(4, 2, padding=1) | |
| ]) | |
| self.concat_fwd = concat_fwd | |
| def forward(self, y, y_hat): | |
| y_d_rs = [] | |
| y_d_gs = [] | |
| fmap_rs = [] | |
| fmap_gs = [] | |
| for i, d in enumerate(self.discriminators): | |
| if self.concat_fwd: | |
| ys = concat_discr_input(y, y_hat) | |
| if i != 0: | |
| ys = self.meanpools[i-1](ys) | |
| y_ds, fmaps = d(ys) | |
| y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps) | |
| else: | |
| if i != 0: | |
| y = self.meanpools[i-1](y) | |
| y_hat = self.meanpools[i-1](y_hat) | |
| y_d_r, fmap_r = d(y) | |
| y_d_g, fmap_g = d(y_hat) | |
| y_d_rs.append(y_d_r) | |
| fmap_rs.append(fmap_r) | |
| y_d_gs.append(y_d_g) | |
| fmap_gs.append(fmap_g) | |
| return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
| def concat_discr_input(y, y_hat): | |
| return torch.cat((y, y_hat), dim=0) | |
| def split_discr_output(y_ds, fmaps): | |
| y_d_r, y_d_g = torch.chunk(y_ds, 2, dim=0) | |
| fmap_r, fmap_g = zip(*(torch.chunk(f, 2, dim=0) for f in fmaps)) | |
| return y_d_r, y_d_g, fmap_r, fmap_g | |
| def feature_loss(fmap_r, fmap_g): | |
| loss = 0 | |
| for dr, dg in zip(fmap_r, fmap_g): | |
| for rl, gl in zip(dr, dg): | |
| loss += torch.mean(torch.abs(rl - gl)) | |
| return loss*2 | |
| def discriminator_loss(disc_real_outputs, disc_generated_outputs): | |
| loss = 0 | |
| r_losses = [] | |
| g_losses = [] | |
| for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
| r_loss = torch.mean((1-dr)**2) | |
| g_loss = torch.mean(dg**2) | |
| loss += (r_loss + g_loss) | |
| r_losses.append(r_loss.item()) | |
| g_losses.append(g_loss.item()) | |
| return loss, r_losses, g_losses | |
| def generator_loss(disc_outputs): | |
| loss = 0 | |
| gen_losses = [] | |
| for dg in disc_outputs: | |
| l = torch.mean((1-dg)**2) | |
| gen_losses.append(l) | |
| loss += l | |
| return loss, gen_losses | |