Spaces:
Running
Running
Upload 2 files
Browse files- gradio_gui_6lang_blocks.py +180 -0
- syn_hifigan.py +42 -23
gradio_gui_6lang_blocks.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
|
| 5 |
+
import syn_hifigan as syn
|
| 6 |
+
#import syn_vgan as syn
|
| 7 |
+
#import syn_k_univnet_multi as syn
|
| 8 |
+
|
| 9 |
+
description_text = """
|
| 10 |
+
# Multilingual TTS for Sámi languages (+ Finnish and Estonian)
|
| 11 |
+
|
| 12 |
+
Welcome! This is a demonstration of a multi-lingual and multi-speaker Text-to-Speech (TTS) model.
|
| 13 |
+
The demo is related to research on TTS for low-resource languages, and the effect of augmenting the training data with
|
| 14 |
+
areally close languages.
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
Disclaimers:
|
| 18 |
+
For convenience, the demo uses pretrained HiFi-GAN vocoder which doesn't work well with male voices.
|
| 19 |
+
English does not well due to small dataset and orthographic transcriptions. Use the demo just for testing, not for frequent or commercial use.
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
"""
|
| 24 |
+
speakers = {
|
| 25 |
+
"aj(sma)": 2,
|
| 26 |
+
"am(sme)": 3,
|
| 27 |
+
"ms(sme)": 4,
|
| 28 |
+
"ln(sme)": 5,
|
| 29 |
+
"mu(smj)": 7,
|
| 30 |
+
"sa(smj)": 8,
|
| 31 |
+
"bi(smj": 10,
|
| 32 |
+
"css(fin)": 11,
|
| 33 |
+
"ti(fin)": 13,
|
| 34 |
+
"ta(fin)": 14,
|
| 35 |
+
"liivika(est)": 15,
|
| 36 |
+
"indek(est)": 16,
|
| 37 |
+
"kylli(est)": 17,
|
| 38 |
+
"andreas(est)": 18,
|
| 39 |
+
"peeter(est)": 19,
|
| 40 |
+
"kersti(est)": 20,
|
| 41 |
+
"M6670(eng)": 21,
|
| 42 |
+
"M6097(eng)": 22,
|
| 43 |
+
"F92(eng)": 23,
|
| 44 |
+
"F9136(eng)": 24
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
mean_pitch = {
|
| 48 |
+
"aj0": 130,
|
| 49 |
+
"aj1": 130,
|
| 50 |
+
"am": 120,
|
| 51 |
+
"ms": 120,
|
| 52 |
+
"ln": 120,
|
| 53 |
+
"lo": 120,
|
| 54 |
+
"mu": 120,
|
| 55 |
+
"sa": 120,
|
| 56 |
+
"kd": 120,
|
| 57 |
+
"bi": 120,
|
| 58 |
+
"ti": 130,
|
| 59 |
+
"ta": 115,
|
| 60 |
+
"liivika": 120,
|
| 61 |
+
"indek": 90,
|
| 62 |
+
"kylli": 140,
|
| 63 |
+
"andreas": 100,
|
| 64 |
+
"peeter": 80,
|
| 65 |
+
"kersti": 120
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
languages = {
|
| 69 |
+
"guess": -1,
|
| 70 |
+
"South Sámi": 0, #South
|
| 71 |
+
"North Sámi": 1, #North
|
| 72 |
+
"Lule Sámi": 2, #Lule
|
| 73 |
+
"Finnish": 3,
|
| 74 |
+
"Estonian": 4,
|
| 75 |
+
"English": 5
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
# --- NEW: Add a dictionary for default prompts per language ---
|
| 79 |
+
default_prompts = {
|
| 80 |
+
"guess": "Sáhtta go esso-burgera luohti, Koskenkorva dahje carpool karajoiki gádjut árgabeaivveluođi?",
|
| 81 |
+
|
| 82 |
+
"North Sámi": "Riektačállinreaidduid lassin Divvun-joavkkus ovdanit dál maiddái hállanteknologiijareaidduid.",
|
| 83 |
+
|
| 84 |
+
"South Sámi": " Buerie aerede gaajhkesh dovnesh jïh buerie båeteme dan bæjhkoehtæmman.", #Guktie datnine?",
|
| 85 |
+
"Lule Sámi": "Sáme hållamsyntiesaj baktu máhttá adnegoahtet sáme gielajt ådå aktijvuodajn.",
|
| 86 |
+
|
| 87 |
+
"Finnish": "Joka kuuseen kurkottaa, se katajaan kapsahtaa.",
|
| 88 |
+
"Estonian": "Aprilli lõpp pani aiapidajate kannatuse jälle proovile – pärast mõnepäevast sooja saabub ootamatu külmalaine.",
|
| 89 |
+
|
| 90 |
+
"English": "This obscure language is not supported by this model."
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
public = False
|
| 95 |
+
|
| 96 |
+
tempdir = tempfile.gettempdir()
|
| 97 |
+
|
| 98 |
+
tts = syn.Synthesizer()
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def speak(text, language, speaker, l_weight, s_weight, pace, postfilter): # pitch_shift,pitch_std):
|
| 102 |
+
|
| 103 |
+
# text frontend not implemented...
|
| 104 |
+
text = text.replace("...", "…")
|
| 105 |
+
#print(speakers[speaker])
|
| 106 |
+
#print(language)
|
| 107 |
+
use_lid = False
|
| 108 |
+
if language == "guess":
|
| 109 |
+
use_lid = True
|
| 110 |
+
|
| 111 |
+
audio = tts.speak(text, output_file=f'{tempdir}/tmp', lang=languages[language],
|
| 112 |
+
spkr=speakers[speaker], l_weight=l_weight, s_weight=s_weight,
|
| 113 |
+
pace=pace, clarity=postfilter, guess_lang=use_lid) # , mean_pitch = mean_pitch[speaker])
|
| 114 |
+
|
| 115 |
+
if not public:
|
| 116 |
+
try:
|
| 117 |
+
os.system("play " + tempdir + "/tmp.wav &")
|
| 118 |
+
except:
|
| 119 |
+
pass
|
| 120 |
+
|
| 121 |
+
return (22050, audio)
|
| 122 |
+
|
| 123 |
+
# update the text box based on language selection
|
| 124 |
+
def update_text_prompt(language):
|
| 125 |
+
"""
|
| 126 |
+
Updates the text in the textbox to the default prompt for the selected language.
|
| 127 |
+
"""
|
| 128 |
+
prompt = default_prompts.get(language, "") # Get the prompt, or an empty string if not found
|
| 129 |
+
return gr.Textbox(value=prompt)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
#
|
| 133 |
+
with gr.Blocks() as tts_gui:
|
| 134 |
+
gr.Markdown(description_text) #"## Multilingual TTS for Sámi languages (+ Finnish and Estonian)")
|
| 135 |
+
with gr.Row():
|
| 136 |
+
with gr.Column(scale=2):
|
| 137 |
+
# Define each component and assign it to a variable
|
| 138 |
+
text_input = gr.Textbox(label="Text", value=default_prompts["North Sámi"])
|
| 139 |
+
language_dd = gr.Dropdown(list(languages.keys()), label="Language", value="North Sámi")
|
| 140 |
+
speaker_dd = gr.Dropdown(list(speakers.keys()), label="Voice", value="ms(sme)")
|
| 141 |
+
|
| 142 |
+
with gr.Row():
|
| 143 |
+
l_weight_slider = gr.Slider(minimum=0.5, maximum=1.5, step=0.05, value=1, label="Language Weight")
|
| 144 |
+
s_weight_slider = gr.Slider(minimum=0.5, maximum=1.5, step=0.05, value=1, label="Speaker Weight")
|
| 145 |
+
|
| 146 |
+
pace_slider = gr.Slider(minimum=0.5, maximum=1.5, step=0.05, value=1.0, label="Speech Rate")
|
| 147 |
+
postfilter_slider = gr.Slider(minimum=0., maximum=2, step=0.05, value=1.0, label="Post-processing")
|
| 148 |
+
|
| 149 |
+
with gr.Column(scale=1):
|
| 150 |
+
# Add a button to trigger synthesis
|
| 151 |
+
speak_button = gr.Button("Speak", variant="primary")
|
| 152 |
+
audio_output = gr.Audio(label="Output")
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
language_dd.change(
|
| 158 |
+
fn=update_text_prompt,
|
| 159 |
+
inputs=[language_dd],
|
| 160 |
+
outputs=[text_input]
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
speak_button.click(
|
| 165 |
+
fn=speak,
|
| 166 |
+
inputs=[
|
| 167 |
+
text_input,
|
| 168 |
+
language_dd,
|
| 169 |
+
speaker_dd,
|
| 170 |
+
l_weight_slider,
|
| 171 |
+
s_weight_slider,
|
| 172 |
+
pace_slider,
|
| 173 |
+
postfilter_slider
|
| 174 |
+
],
|
| 175 |
+
outputs=[audio_output]
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
if __name__ == "__main__":
|
| 180 |
+
tts_gui.launch(share=public)
|
syn_hifigan.py
CHANGED
|
@@ -15,17 +15,17 @@ from scipy.io.wavfile import write
|
|
| 15 |
from torch.nn.utils.rnn import pad_sequence
|
| 16 |
#import style_controller
|
| 17 |
from common.utils import load_wav_to_torch
|
| 18 |
-
|
| 19 |
|
| 20 |
from common import utils, layers
|
| 21 |
|
| 22 |
from common.text.text_processing import TextProcessing
|
| 23 |
-
|
| 24 |
|
| 25 |
import os
|
| 26 |
#os.environ["CUDA_VISIBLE_DEVICES"]=""
|
| 27 |
-
|
| 28 |
-
device = "cpu"
|
| 29 |
|
| 30 |
vocoder = "hifigan"
|
| 31 |
SHARPEN = True
|
|
@@ -53,12 +53,12 @@ def parse_args(parser):
|
|
| 53 |
parser.add_argument('--cudnn-benchmark', action='store_true',
|
| 54 |
help='Enable cudnn benchmark mode')
|
| 55 |
|
| 56 |
-
#parser.add_argument('--fastpitch', type=str, default='
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
parser.add_argument('-d', '--denoising-strength', default=0.01, type=float,
|
| 63 |
help='WaveGlow denoising')
|
| 64 |
parser.add_argument('-sr', '--sampling-rate', default=22050, type=int,
|
|
@@ -83,14 +83,14 @@ def parse_args(parser):
|
|
| 83 |
text_processing.add_argument('--text-cleaners', nargs='*',
|
| 84 |
default=['basic_cleaners'], type=str,
|
| 85 |
help='Type of text cleaners for input text')
|
| 86 |
-
text_processing.add_argument('--symbol-set', type=str, default='all_sami', #################
|
| 87 |
help='Define symbol set for input text')
|
| 88 |
|
| 89 |
cond = parser.add_argument_group('conditioning on additional attributes')
|
| 90 |
|
| 91 |
-
cond.add_argument('--n-speakers', type=int, default=10
|
| 92 |
help='Number of speakers in the model.')
|
| 93 |
-
cond.add_argument('--n-languages', type=int, default=3
|
| 94 |
help='Number of languages in the model.')
|
| 95 |
|
| 96 |
return parser
|
|
@@ -192,7 +192,7 @@ class Synthesizer:
|
|
| 192 |
self.vocoder, voc_train_setup= self._load_pyt_or_ts_model('HiFi-GAN', self.hifigan_model)
|
| 193 |
self.denoiser = Denoiser(self.vocoder,device=device) #, win_length=self.args.win_length).to(device)
|
| 194 |
self.tp = TextProcessing(self.args.symbol_set, self.args.text_cleaners, p_arpabet=0.0)
|
| 195 |
-
|
| 196 |
|
| 197 |
|
| 198 |
def unsharp_mask(self, img, radius=1, amount=1):
|
|
@@ -200,12 +200,31 @@ class Synthesizer:
|
|
| 200 |
sharpened = img + amount * ( img - blurred)
|
| 201 |
return sharpened
|
| 202 |
|
| 203 |
-
def speak(self, text, output_file="/tmp/tmp", spkr=0, lang=0, l_weight=1, s_weight=1, pace=0.95, clarity=1):
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
text = self.tp.encode_text(text)
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
text = torch.LongTensor([text]).to(device)
|
| 208 |
-
|
| 209 |
for p in [0]:
|
| 210 |
|
| 211 |
with torch.no_grad():
|
|
@@ -216,8 +235,8 @@ class Synthesizer:
|
|
| 216 |
|
| 217 |
mel_np = mel.float().data.cpu().numpy()[0]
|
| 218 |
tgt_min = -11
|
| 219 |
-
tgt_max = 1.
|
| 220 |
-
#print(np.min(mel_np), np.max(mel_np))
|
| 221 |
mel_np = self.unsharp_mask(mel_np, radius = 0.5, amount=0.5)
|
| 222 |
mel_np = self.unsharp_mask(mel_np, radius = 3, amount=.05)
|
| 223 |
# mel_np = self.unsharp_mask(mel_np, radius = 7, amount=0.05)
|
|
@@ -239,7 +258,7 @@ class Synthesizer:
|
|
| 239 |
sharpened[i, :]+=(i-40)*0.01 #0.01 ta
|
| 240 |
mel[0] = torch.from_numpy(sharpened).float().to(device)
|
| 241 |
|
| 242 |
-
|
| 243 |
with torch.no_grad():
|
| 244 |
|
| 245 |
y_g_hat = self.vocoder(mel).float() ###########
|
|
@@ -252,7 +271,7 @@ class Synthesizer:
|
|
| 252 |
|
| 253 |
write(output_file+".wav", 22050, audio)
|
| 254 |
|
| 255 |
-
os.system("play -q "+output_file+".wav")
|
| 256 |
return audio
|
| 257 |
|
| 258 |
|
|
@@ -280,8 +299,8 @@ if __name__ == '__main__':
|
|
| 280 |
|
| 281 |
text = input(">")
|
| 282 |
text1 = text.split(" ")
|
| 283 |
-
syn.speak(text, output_file="/tmp/tmp.wav", spkr=
|
| 284 |
-
syn.speak(text, output_file="/tmp/tmp.wav", spkr=
|
| 285 |
continue
|
| 286 |
for s in range(1,10):
|
| 287 |
for l in range(3): ##
|
|
|
|
| 15 |
from torch.nn.utils.rnn import pad_sequence
|
| 16 |
#import style_controller
|
| 17 |
from common.utils import load_wav_to_torch
|
| 18 |
+
from langid.langid import WordLid
|
| 19 |
|
| 20 |
from common import utils, layers
|
| 21 |
|
| 22 |
from common.text.text_processing import TextProcessing
|
| 23 |
+
from collections import Counter
|
| 24 |
|
| 25 |
import os
|
| 26 |
#os.environ["CUDA_VISIBLE_DEVICES"]=""
|
| 27 |
+
device = "cuda:0"
|
| 28 |
+
#device = "cpu"
|
| 29 |
|
| 30 |
vocoder = "hifigan"
|
| 31 |
SHARPEN = True
|
|
|
|
| 53 |
parser.add_argument('--cudnn-benchmark', action='store_true',
|
| 54 |
help='Enable cudnn benchmark mode')
|
| 55 |
|
| 56 |
+
#parser.add_argument('--fastpitch', type=str, default='output_multilang/FastPitch_checkpoint_200.pt',
|
| 57 |
+
# help='Full path to the generator checkpoint file (skip to use ground truth mels)') #########
|
| 58 |
+
#parser.add_argument('--fastpitch', type=str, default='output_uralic/FastPitch_checkpoint_200.pt',
|
| 59 |
+
# help='Full path to the generator checkpoint file (skip to use ground truth mels)') #########
|
| 60 |
+
parser.add_argument('--fastpitch', type=str, default='output_6lang/FastPitch_checkpoint_50.pt',
|
| 61 |
+
help='Full path to the generator checkpoint file (skip to use ground truth mels)') #########
|
| 62 |
parser.add_argument('-d', '--denoising-strength', default=0.01, type=float,
|
| 63 |
help='WaveGlow denoising')
|
| 64 |
parser.add_argument('-sr', '--sampling-rate', default=22050, type=int,
|
|
|
|
| 83 |
text_processing.add_argument('--text-cleaners', nargs='*',
|
| 84 |
default=['basic_cleaners'], type=str,
|
| 85 |
help='Type of text cleaners for input text')
|
| 86 |
+
text_processing.add_argument('--symbol-set', type=str, default='uralic', #'all_sami', #################
|
| 87 |
help='Define symbol set for input text')
|
| 88 |
|
| 89 |
cond = parser.add_argument_group('conditioning on additional attributes')
|
| 90 |
|
| 91 |
+
cond.add_argument('--n-speakers', type=int, default=30, #10
|
| 92 |
help='Number of speakers in the model.')
|
| 93 |
+
cond.add_argument('--n-languages', type=int, default=6, #3
|
| 94 |
help='Number of languages in the model.')
|
| 95 |
|
| 96 |
return parser
|
|
|
|
| 192 |
self.vocoder, voc_train_setup= self._load_pyt_or_ts_model('HiFi-GAN', self.hifigan_model)
|
| 193 |
self.denoiser = Denoiser(self.vocoder,device=device) #, win_length=self.args.win_length).to(device)
|
| 194 |
self.tp = TextProcessing(self.args.symbol_set, self.args.text_cleaners, p_arpabet=0.0)
|
| 195 |
+
self.lid = WordLid("langid/lang_id_model_q.bin")
|
| 196 |
|
| 197 |
|
| 198 |
def unsharp_mask(self, img, radius=1, amount=1):
|
|
|
|
| 200 |
sharpened = img + amount * ( img - blurred)
|
| 201 |
return sharpened
|
| 202 |
|
| 203 |
+
def speak(self, text, output_file="/tmp/tmp", spkr=0, lang=0, l_weight=1, s_weight=1, pace=0.95, clarity=1, guess_lang=True):
|
| 204 |
|
| 205 |
+
text = " "+text+" "
|
| 206 |
+
|
| 207 |
+
if guess_lang:
|
| 208 |
+
lang = self.lid.get_lang_array(text)
|
| 209 |
+
main_lang = Counter(lang).most_common(1)[0][0]
|
| 210 |
+
|
| 211 |
+
lang = torch.tensor(lang).to(device)
|
| 212 |
+
lang_weight = torch.zeros(len(lang))
|
| 213 |
+
lang_weight[:] = l_weight
|
| 214 |
+
lang_weight[lang!=main_lang] = 0.5*l_weight
|
| 215 |
+
|
| 216 |
text = self.tp.encode_text(text)
|
| 217 |
+
|
| 218 |
+
if guess_lang == False:
|
| 219 |
+
lang = torch.tensor(lang).to(device)
|
| 220 |
+
else:
|
| 221 |
+
if len(text) != len(lang):
|
| 222 |
+
print("text length not equal to language list length!")
|
| 223 |
+
lang = lang[0]
|
| 224 |
+
l_weight = l_weight[0]
|
| 225 |
+
|
| 226 |
text = torch.LongTensor([text]).to(device)
|
| 227 |
+
|
| 228 |
for p in [0]:
|
| 229 |
|
| 230 |
with torch.no_grad():
|
|
|
|
| 235 |
|
| 236 |
mel_np = mel.float().data.cpu().numpy()[0]
|
| 237 |
tgt_min = -11
|
| 238 |
+
tgt_max = 1.5
|
| 239 |
+
#print(np.min(mel_np) , np.max(mel_np))
|
| 240 |
mel_np = self.unsharp_mask(mel_np, radius = 0.5, amount=0.5)
|
| 241 |
mel_np = self.unsharp_mask(mel_np, radius = 3, amount=.05)
|
| 242 |
# mel_np = self.unsharp_mask(mel_np, radius = 7, amount=0.05)
|
|
|
|
| 258 |
sharpened[i, :]+=(i-40)*0.01 #0.01 ta
|
| 259 |
mel[0] = torch.from_numpy(sharpened).float().to(device)
|
| 260 |
|
| 261 |
+
"""
|
| 262 |
with torch.no_grad():
|
| 263 |
|
| 264 |
y_g_hat = self.vocoder(mel).float() ###########
|
|
|
|
| 271 |
|
| 272 |
write(output_file+".wav", 22050, audio)
|
| 273 |
|
| 274 |
+
#os.system("play -q "+output_file+".wav")
|
| 275 |
return audio
|
| 276 |
|
| 277 |
|
|
|
|
| 299 |
|
| 300 |
text = input(">")
|
| 301 |
text1 = text.split(" ")
|
| 302 |
+
syn.speak(text, output_file="/tmp/tmp.wav", spkr=14, lang=4)
|
| 303 |
+
syn.speak(text, output_file="/tmp/tmp.wav", spkr=14, lang=4, guess_lang=False)
|
| 304 |
continue
|
| 305 |
for s in range(1,10):
|
| 306 |
for l in range(3): ##
|