Spaces:
Sleeping
Sleeping
File size: 16,755 Bytes
8146713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import functools import json import re from pathlib import Path import librosa import numpy as np import torch import torch.nn.functional as F from scipy import ndimage from scipy.stats import betabinom import common.layers as layers from common.text.text_processing import TextProcessing from common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu class BetaBinomialInterpolator: """Interpolates alignment prior matrices to save computation. Calculating beta-binomial priors is costly. Instead cache popular sizes and use img interpolation to get priors faster. """ def __init__(self, round_mel_len_to=100, round_text_len_to=20): self.round_mel_len_to = round_mel_len_to self.round_text_len_to = round_text_len_to self.bank = functools.lru_cache(beta_binomial_prior_distribution) def round(self, val, to): return max(1, int(np.round((val + 1) / to))) * to def __call__(self, w, h): bw = self.round(w, to=self.round_mel_len_to) bh = self.round(h, to=self.round_text_len_to) ret = ndimage.zoom(self.bank(bw, bh).T, zoom=(w / bw, h / bh), order=1) assert ret.shape[0] == w, ret.shape assert ret.shape[1] == h, ret.shape return ret def beta_binomial_prior_distribution(phoneme_count, mel_count, scaling=1.0): P = phoneme_count M = mel_count x = np.arange(0, P) mel_text_probs = [] for i in range(1, M+1): a, b = scaling * i, scaling * (M + 1 - i) rv = betabinom(P, a, b) mel_i_prob = rv.pmf(x) mel_text_probs.append(mel_i_prob) return torch.tensor(np.array(mel_text_probs)) def estimate_pitch(wav, mel_len, method='pyin', normalize_mean=None, normalize_std=None, n_formants=1): if type(normalize_mean) is float or type(normalize_mean) is list: normalize_mean = torch.tensor(normalize_mean) if type(normalize_std) is float or type(normalize_std) is list: normalize_std = torch.tensor(normalize_std) if method == 'pyin': snd, sr = librosa.load(wav) pitch_mel, voiced_flag, voiced_probs = librosa.pyin( snd, fmin=librosa.note_to_hz('C2'), # fmax=librosa.note_to_hz('C7'), frame_length=1024) fmax=400, frame_length=1024) assert np.abs(mel_len - pitch_mel.shape[0]) <= 1.0 pitch_mel = np.where(np.isnan(pitch_mel), 0.0, pitch_mel) pitch_mel = torch.from_numpy(pitch_mel).unsqueeze(0) pitch_mel = F.pad(pitch_mel, (0, mel_len - pitch_mel.size(1))) if n_formants > 1: raise NotImplementedError else: raise ValueError pitch_mel = pitch_mel.float() if normalize_mean is not None: assert normalize_std is not None pitch_mel = normalize_pitch(pitch_mel, normalize_mean, normalize_std) return pitch_mel def normalize_pitch(pitch, mean, std): zeros = (pitch == 0.0) pitch -= mean[:, None] pitch /= std[:, None] pitch[zeros] = 0.0 return pitch class TTSDataset(torch.utils.data.Dataset): """ 1) loads audio,text pairs 2) normalizes text and converts them to sequences of one-hot vectors 3) computes mel-spectrograms from audio files. """ def __init__(self, dataset_path, audiopaths_and_text, text_cleaners, n_mel_channels, symbol_set='english_basic', p_arpabet=1.0, n_speakers=1, load_mel_from_disk=True, load_pitch_from_disk=True, pitch_mean=214.72203, # LJSpeech defaults pitch_std=65.72038, max_wav_value=None, sampling_rate=None, filter_length=None, hop_length=None, win_length=None, mel_fmin=None, mel_fmax=None, prepend_space_to_text=False, append_space_to_text=False, pitch_online_dir=None, betabinomial_online_dir=None, use_betabinomial_interpolator=True, pitch_online_method='pyin', **ignored): # Expect a list of filenames if type(audiopaths_and_text) is str: audiopaths_and_text = [audiopaths_and_text] self.dataset_path = dataset_path self.audiopaths_and_text = load_filepaths_and_text( dataset_path, audiopaths_and_text, has_speakers=(n_speakers > 1)) self.load_mel_from_disk = load_mel_from_disk if not load_mel_from_disk: self.max_wav_value = max_wav_value self.sampling_rate = sampling_rate self.stft = layers.TacotronSTFT( filter_length, hop_length, win_length, n_mel_channels, sampling_rate, mel_fmin, mel_fmax) self.load_pitch_from_disk = load_pitch_from_disk self.prepend_space_to_text = prepend_space_to_text self.append_space_to_text = append_space_to_text assert p_arpabet == 0.0 or p_arpabet == 1.0, ( 'Only 0.0 and 1.0 p_arpabet is currently supported. ' 'Variable probability breaks caching of betabinomial matrices.') self.tp = TextProcessing(symbol_set, text_cleaners, p_arpabet=p_arpabet) self.n_speakers = n_speakers self.pitch_tmp_dir = pitch_online_dir self.f0_method = pitch_online_method self.betabinomial_tmp_dir = betabinomial_online_dir self.use_betabinomial_interpolator = use_betabinomial_interpolator if use_betabinomial_interpolator: self.betabinomial_interpolator = BetaBinomialInterpolator() expected_columns = (2 + int(load_pitch_from_disk) + (n_speakers > 1)) assert not (load_pitch_from_disk and self.pitch_tmp_dir is not None) if len(self.audiopaths_and_text[0]) < expected_columns: raise ValueError(f'Expected {expected_columns} columns in audiopaths file. ' 'The format is <mel_or_wav>|[<pitch>|]<text>[|<speaker_id>]') if len(self.audiopaths_and_text[0]) > expected_columns: print('WARNING: Audiopaths file has more columns than expected') to_tensor = lambda x: torch.Tensor([x]) if type(x) is float else x self.pitch_mean = to_tensor(pitch_mean) self.pitch_std = to_tensor(pitch_std) def __getitem__(self, index): # Separate filename and text if self.n_speakers > 1: audiopath, *extra, text, speaker = self.audiopaths_and_text[index] speaker = int(speaker) else: audiopath, *extra, text = self.audiopaths_and_text[index] speaker = None mel = self.get_mel(audiopath) text = self.get_text(text) # print(text) pitch = self.get_pitch(index, mel.size(-1)) energy = torch.norm(mel.float(), dim=0, p=2) attn_prior = self.get_prior(index, mel.shape[1], text.shape[0]) assert pitch.size(-1) == mel.size(-1) # No higher formants? if len(pitch.size()) == 1: pitch = pitch[None, :] return (text, mel, len(text), pitch, energy, speaker, attn_prior, audiopath) def __len__(self): return len(self.audiopaths_and_text) def get_mel(self, filename): if not self.load_mel_from_disk: audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.stft.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate)) audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) melspec = self.stft.mel_spectrogram(audio_norm) melspec = torch.squeeze(melspec, 0) else: melspec = torch.load(filename) assert melspec.size(0) == self.stft.n_mel_channels, ( 'Mel dimension mismatch: given {}, expected {}'.format( melspec.size(0), self.stft.n_mel_channels)) ################ Plotting mels ######################################## import matplotlib.pyplot as plt # plt.imshow(melspec.detach().cpu().T,aspect="auto") fig, ax1 = plt.subplots(ncols=1) pos = ax1.imshow(melspec.cpu().numpy().T,aspect="auto") fig.colorbar(pos, ax=ax1) plt.show() ####################################################################### return melspec def get_text(self, text): text = self.tp.encode_text(text) space = [self.tp.encode_text("A A")[1]] if self.prepend_space_to_text: text = space + text if self.append_space_to_text: text = text + space return torch.LongTensor(text) def get_prior(self, index, mel_len, text_len): if self.use_betabinomial_interpolator: return torch.from_numpy(self.betabinomial_interpolator(mel_len, text_len)) if self.betabinomial_tmp_dir is not None: audiopath, *_ = self.audiopaths_and_text[index] fname = Path(audiopath).relative_to(self.dataset_path) fname = fname.with_suffix('.pt') cached_fpath = Path(self.betabinomial_tmp_dir, fname) if cached_fpath.is_file(): return torch.load(cached_fpath) attn_prior = beta_binomial_prior_distribution(text_len, mel_len) if self.betabinomial_tmp_dir is not None: cached_fpath.parent.mkdir(parents=True, exist_ok=True) torch.save(attn_prior, cached_fpath) return attn_prior def get_pitch(self, index, mel_len=None): audiopath, *fields = self.audiopaths_and_text[index] if self.n_speakers > 1: spk = int(fields[-1]) else: spk = 0 if self.load_pitch_from_disk: pitchpath = fields[0] pitch = torch.load(pitchpath) if self.pitch_mean is not None: assert self.pitch_std is not None pitch = normalize_pitch(pitch, self.pitch_mean, self.pitch_std) return pitch if self.pitch_tmp_dir is not None: fname = Path(audiopath).relative_to(self.dataset_path) fname_method = fname.with_suffix('.pt') cached_fpath = Path(self.pitch_tmp_dir, fname_method) if cached_fpath.is_file(): return torch.load(cached_fpath) # No luck so far - calculate wav = audiopath if not wav.endswith('.wav'): wav = re.sub('/mels/', '/wavs/', wav) wav = re.sub('.pt$', '.wav', wav) pitch_mel = estimate_pitch(wav, mel_len, self.f0_method, self.pitch_mean, self.pitch_std) if self.pitch_tmp_dir is not None and not cached_fpath.is_file(): cached_fpath.parent.mkdir(parents=True, exist_ok=True) torch.save(pitch_mel, cached_fpath) return pitch_mel class TTSCollate: """Zero-pads model inputs and targets based on number of frames per step""" def __call__(self, batch): """Collate training batch from normalized text and mel-spec""" # Right zero-pad all one-hot text sequences to max input length input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([len(x[0]) for x in batch]), dim=0, descending=True) max_input_len = input_lengths[0] text_padded = torch.LongTensor(len(batch), max_input_len) text_padded.zero_() for i in range(len(ids_sorted_decreasing)): text = batch[ids_sorted_decreasing[i]][0] text_padded[i, :text.size(0)] = text # Right zero-pad mel-spec num_mels = batch[0][1].size(0) max_target_len = max([x[1].size(1) for x in batch]) # Include mel padded and gate padded mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len) mel_padded.zero_() output_lengths = torch.LongTensor(len(batch)) for i in range(len(ids_sorted_decreasing)): mel = batch[ids_sorted_decreasing[i]][1] mel_padded[i, :, :mel.size(1)] = mel output_lengths[i] = mel.size(1) n_formants = batch[0][3].shape[0] pitch_padded = torch.zeros(mel_padded.size(0), n_formants, mel_padded.size(2), dtype=batch[0][3].dtype) energy_padded = torch.zeros_like(pitch_padded[:, 0, :]) for i in range(len(ids_sorted_decreasing)): pitch = batch[ids_sorted_decreasing[i]][3] energy = batch[ids_sorted_decreasing[i]][4] pitch_padded[i, :, :pitch.shape[1]] = pitch energy_padded[i, :energy.shape[0]] = energy if batch[0][5] is not None: speaker = torch.zeros_like(input_lengths) for i in range(len(ids_sorted_decreasing)): speaker[i] = batch[ids_sorted_decreasing[i]][5] else: speaker = None attn_prior_padded = torch.zeros(len(batch), max_target_len, max_input_len) attn_prior_padded.zero_() for i in range(len(ids_sorted_decreasing)): prior = batch[ids_sorted_decreasing[i]][6] attn_prior_padded[i, :prior.size(0), :prior.size(1)] = prior # Count number of items - characters in text len_x = [x[2] for x in batch] len_x = torch.Tensor(len_x) audiopaths = [batch[i][7] for i in ids_sorted_decreasing] return (text_padded, input_lengths, mel_padded, output_lengths, len_x, pitch_padded, energy_padded, speaker, attn_prior_padded, audiopaths) def batch_to_gpu(batch): (text_padded, input_lengths, mel_padded, output_lengths, len_x, pitch_padded, energy_padded, speaker, attn_prior, audiopaths) = batch text_padded = to_gpu(text_padded).long() input_lengths = to_gpu(input_lengths).long() mel_padded = to_gpu(mel_padded).float() output_lengths = to_gpu(output_lengths).long() pitch_padded = to_gpu(pitch_padded).float() energy_padded = to_gpu(energy_padded).float() attn_prior = to_gpu(attn_prior).float() if speaker is not None: speaker = to_gpu(speaker).long() # Alignments act as both inputs and targets - pass shallow copies x = [text_padded, input_lengths, mel_padded, output_lengths, pitch_padded, energy_padded, speaker, attn_prior, audiopaths] y = [mel_padded, input_lengths, output_lengths] len_x = torch.sum(output_lengths) return (x, y, len_x) |