Spaces:
Sleeping
Sleeping
File size: 26,510 Bytes
8146713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
# *****************************************************************************
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the NVIDIA CORPORATION nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# *****************************************************************************
import argparse
import copy
import os
import time
from collections import defaultdict, OrderedDict
from itertools import cycle
import numpy as np
import torch
import torch.distributed as dist
import amp_C
from apex.optimizers import FusedAdam, FusedLAMB
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import common.tb_dllogger as logger
import models
from common.tb_dllogger import log
from common.repeated_dataloader import (RepeatedDataLoader,
RepeatedDistributedSampler)
from common.text import cmudict
from common.utils import BenchmarkStats, Checkpointer, prepare_tmp
from fastpitch.attn_loss_function import AttentionBinarizationLoss
from fastpitch.data_function import batch_to_gpu, TTSCollate, TTSDataset
from fastpitch.loss_function import FastPitchLoss
import matplotlib.pyplot as plt
def parse_args(parser):
parser.add_argument('-o', '--output', type=str, required=True,
help='Directory to save checkpoints')
parser.add_argument('-d', '--dataset-path', type=str, default='./',
help='Path to dataset')
parser.add_argument('--log-file', type=str, default=None,
help='Path to a DLLogger log file')
train = parser.add_argument_group('training setup')
train.add_argument('--epochs', type=int, required=True,
help='Number of total epochs to run')
train.add_argument('--epochs-per-checkpoint', type=int, default=50,
help='Number of epochs per checkpoint')
train.add_argument('--checkpoint-path', type=str, default=None,
help='Checkpoint path to resume training')
train.add_argument('--keep-milestones', default=list(range(100, 1000, 100)),
type=int, nargs='+',
help='Milestone checkpoints to keep from removing')
train.add_argument('--resume', action='store_true',
help='Resume training from the last checkpoint')
train.add_argument('--seed', type=int, default=1234,
help='Seed for PyTorch random number generators')
train.add_argument('--amp', action='store_true',
help='Enable AMP')
train.add_argument('--cuda', action='store_true',
help='Run on GPU using CUDA')
train.add_argument('--cudnn-benchmark', action='store_true',
help='Enable cudnn benchmark mode')
train.add_argument('--ema-decay', type=float, default=0,
help='Discounting factor for training weights EMA')
train.add_argument('--grad-accumulation', type=int, default=1,
help='Training steps to accumulate gradients for')
train.add_argument('--kl-loss-start-epoch', type=int, default=250,
help='Start adding the hard attention loss term')
train.add_argument('--kl-loss-warmup-epochs', type=int, default=100,
help='Gradually increase the hard attention loss term')
train.add_argument('--kl-loss-weight', type=float, default=1.0,
help='Gradually increase the hard attention loss term')
train.add_argument('--benchmark-epochs-num', type=int, default=20,
help='Number of epochs for calculating final stats')
train.add_argument('--validation-freq', type=int, default=1,
help='Validate every N epochs to use less compute')
opt = parser.add_argument_group('optimization setup')
opt.add_argument('--optimizer', type=str, default='lamb',
help='Optimization algorithm')
opt.add_argument('-lr', '--learning-rate', type=float, required=True,
help='Learing rate')
opt.add_argument('--weight-decay', default=1e-6, type=float,
help='Weight decay')
opt.add_argument('--grad-clip-thresh', default=1000.0, type=float,
help='Clip threshold for gradients')
opt.add_argument('-bs', '--batch-size', type=int, required=True,
help='Batch size per GPU')
opt.add_argument('--warmup-steps', type=int, default=1000,
help='Number of steps for lr warmup')
opt.add_argument('--dur-predictor-loss-scale', type=float,
default=1.0, help='Rescale duration predictor loss')
opt.add_argument('--pitch-predictor-loss-scale', type=float,
default=1.0, help='Rescale pitch predictor loss')
opt.add_argument('--attn-loss-scale', type=float,
default=1.0, help='Rescale alignment loss')
data = parser.add_argument_group('dataset parameters')
data.add_argument('--training-files', type=str, nargs='*', required=True,
help='Paths to training filelists.')
data.add_argument('--validation-files', type=str, nargs='*',
required=True, help='Paths to validation filelists')
data.add_argument('--text-cleaners', nargs='*',
default=['english_cleaners'], type=str,
help='Type of text cleaners for input text')
data.add_argument('--symbol-set', type=str, default='english_basic',
help='Define symbol set for input text')
data.add_argument('--p-arpabet', type=float, default=0.0,
help='Probability of using arpabets instead of graphemes '
'for each word; set 0 for pure grapheme training')
data.add_argument('--heteronyms-path', type=str, default='cmudict/heteronyms',
help='Path to the list of heteronyms')
data.add_argument('--cmudict-path', type=str, default='cmudict/cmudict-0.7b',
help='Path to the pronouncing dictionary')
data.add_argument('--prepend-space-to-text', action='store_true',
help='Capture leading silence with a space token')
data.add_argument('--append-space-to-text', action='store_true',
help='Capture trailing silence with a space token')
data.add_argument('--num-workers', type=int, default=2, # 6
help='Subprocesses for train and val DataLoaders')
data.add_argument('--trainloader-repeats', type=int, default=100,
help='Repeats the dataset to prolong epochs')
cond = parser.add_argument_group('data for conditioning')
cond.add_argument('--n-speakers', type=int, default=1,
help='Number of speakers in the dataset. '
'n_speakers > 1 enables speaker embeddings')
# ANT: added language
cond.add_argument('--n-languages', type=int, default=1,
help='Number of languages in the dataset. '
'n_languages > 1 enables language embeddings')
cond.add_argument('--load-pitch-from-disk', action='store_true',
help='Use pitch cached on disk with prepare_dataset.py')
cond.add_argument('--pitch-online-method', default='pyin',
choices=['pyin'],
help='Calculate pitch on the fly during trainig')
cond.add_argument('--pitch-online-dir', type=str, default=None,
help='A directory for storing pitch calculated on-line')
cond.add_argument('--pitch-mean', type=float, default=125.626816, #default=214.72203,
help='Normalization value for pitch')
cond.add_argument('--pitch-std', type=float, default=37.52, #default=65.72038,
help='Normalization value for pitch')
cond.add_argument('--load-mel-from-disk', action='store_true',
help='Use mel-spectrograms cache on the disk') # XXX
audio = parser.add_argument_group('audio parameters')
audio.add_argument('--max-wav-value', default=32768.0, type=float,
help='Maximum audiowave value')
audio.add_argument('--sampling-rate', default=22050, type=int,
help='Sampling rate')
audio.add_argument('--filter-length', default=1024, type=int,
help='Filter length')
audio.add_argument('--hop-length', default=256, type=int,
help='Hop (stride) length')
audio.add_argument('--win-length', default=1024, type=int,
help='Window length')
audio.add_argument('--mel-fmin', default=0.0, type=float,
help='Minimum mel frequency')
audio.add_argument('--mel-fmax', default=8000.0, type=float,
help='Maximum mel frequency')
dist = parser.add_argument_group('distributed setup')
dist.add_argument('--local_rank', type=int, default=os.getenv('LOCAL_RANK', 0),
help='Rank of the process for multiproc; do not set manually')
dist.add_argument('--world_size', type=int, default=os.getenv('WORLD_SIZE', 1),
help='Number of processes for multiproc; do not set manually')
return parser
def reduce_tensor(tensor, num_gpus):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
return rt.true_divide(num_gpus)
def init_distributed(args, world_size, rank):
assert torch.cuda.is_available(), "Distributed mode requires CUDA."
print("Initializing distributed training")
# Set cuda device so everything is done on the right GPU.
torch.cuda.set_device(rank % torch.cuda.device_count())
# Initialize distributed communication
dist.init_process_group(backend=('nccl' if args.cuda else 'gloo'),
init_method='env://')
print("Done initializing distributed training")
def validate(model, epoch, total_iter, criterion, val_loader, distributed_run,
batch_to_gpu, local_rank, ema=False):
was_training = model.training
model.eval()
tik = time.perf_counter()
with torch.no_grad():
val_meta = defaultdict(float)
val_num_frames = 0
for i, batch in enumerate(val_loader):
x, y, num_frames = batch_to_gpu(batch)
y_pred = model(x)
loss, meta = criterion(y_pred, y, is_training=False, meta_agg='sum')
if distributed_run:
for k, v in meta.items():
val_meta[k] += reduce_tensor(v, 1)
val_num_frames += reduce_tensor(num_frames.data, 1).item()
else:
for k, v in meta.items():
val_meta[k] += v
val_num_frames += num_frames.item()
# NOTE: ugly patch to visualize the first utterance of the validation corpus.
# The goal is to determine if the training is progressing properly
if (i == 0) and (local_rank == 0) and (not ema):
# Plot some debug information
fig, axs = plt.subplots(2, 2, figsize=(21,14))
# - Mel-spectrogram
pred_mel = y_pred[0][0, :, :].cpu().detach().numpy().astype(np.float32).T
orig_mel = y[0][0, :, :].cpu().detach().numpy().astype(np.float32)
axs[0,0].imshow(orig_mel, aspect='auto', origin='lower', interpolation='nearest')
axs[1,0].imshow(pred_mel, aspect='auto', origin='lower', interpolation='nearest')
# Prosody
f0_pred = y_pred[4][0, :].cpu().detach().numpy().astype(np.float32)
f0_ori = y_pred[5][0, :].cpu().detach().numpy().astype(np.float32)
axs[1,1].plot(f0_ori)
axs[1,1].plot(f0_pred)
# # Duration
# att_pred = y_pred[2][0, :].cpu().detach().numpy().astype(np.float32)
# att_ori = x[7][0,:].cpu().detach().numpy().astype(np.float32)
# axs[0,1].imshow(att_ori, aspect='auto', origin='lower', interpolation='nearest')
if not os.path.exists("debug_epoch/"):
os.makedirs("debug_epoch_laila/")
fig.savefig(f'debug_epoch/{epoch:06d}.png', bbox_inches='tight')
val_meta = {k: v / len(val_loader.dataset) for k, v in val_meta.items()}
val_meta['took'] = time.perf_counter() - tik
log((epoch,) if epoch is not None else (), tb_total_steps=total_iter,
subset='val_ema' if ema else 'val',
data=OrderedDict([
('loss', val_meta['loss'].item()),
('mel_loss', val_meta['mel_loss'].item()),
('frames/s', val_num_frames / val_meta['took']),
('took', val_meta['took'])]),
)
if was_training:
model.train()
return val_meta
def adjust_learning_rate(total_iter, opt, learning_rate, warmup_iters=None):
if warmup_iters == 0:
scale = 1.0
elif total_iter > warmup_iters:
scale = 1. / (total_iter ** 0.5)
else:
scale = total_iter / (warmup_iters ** 1.5)
for param_group in opt.param_groups:
param_group['lr'] = learning_rate * scale
def apply_ema_decay(model, ema_model, decay):
if not decay:
return
st = model.state_dict()
add_module = hasattr(model, 'module') and not hasattr(ema_model, 'module')
for k, v in ema_model.state_dict().items():
if add_module and not k.startswith('module.'):
k = 'module.' + k
v.copy_(decay * v + (1 - decay) * st[k])
def init_multi_tensor_ema(model, ema_model):
model_weights = list(model.state_dict().values())
ema_model_weights = list(ema_model.state_dict().values())
ema_overflow_buf = torch.cuda.IntTensor([0])
return model_weights, ema_model_weights, ema_overflow_buf
def apply_multi_tensor_ema(decay, model_weights, ema_weights, overflow_buf):
amp_C.multi_tensor_axpby(
65536, overflow_buf, [ema_weights, model_weights, ema_weights],
decay, 1-decay, -1)
def main():
parser = argparse.ArgumentParser(description='PyTorch FastPitch Training',
allow_abbrev=False)
parser = parse_args(parser)
args, _ = parser.parse_known_args()
if args.p_arpabet > 0.0:
cmudict.initialize(args.cmudict_path, args.heteronyms_path)
distributed_run = args.world_size > 1
torch.manual_seed(args.seed + args.local_rank)
np.random.seed(args.seed + args.local_rank)
if args.local_rank == 0:
if not os.path.exists(args.output):
os.makedirs(args.output)
log_fpath = args.log_file or os.path.join(args.output, 'nvlog.json')
tb_subsets = ['train', 'val']
if args.ema_decay > 0.0:
tb_subsets.append('val_ema')
logger.init(log_fpath, args.output, enabled=(args.local_rank == 0),
tb_subsets=tb_subsets)
logger.parameters(vars(args), tb_subset='train')
parser = models.parse_model_args('FastPitch', parser)
args, unk_args = parser.parse_known_args()
if len(unk_args) > 0:
raise ValueError(f'Invalid options {unk_args}')
torch.backends.cudnn.benchmark = args.cudnn_benchmark
if distributed_run:
init_distributed(args, args.world_size, args.local_rank)
else:
if args.trainloader_repeats > 1:
print('WARNING: Disabled --trainloader-repeats, supported only for'
' multi-GPU data loading.')
args.trainloader_repeats = 1
device = torch.device('cuda' if args.cuda else 'cpu')
model_config = models.get_model_config('FastPitch', args)
model = models.get_model('FastPitch', model_config, device)
attention_kl_loss = AttentionBinarizationLoss()
# Store pitch mean/std as params to translate from Hz during inference
model.pitch_mean[0] = args.pitch_mean
model.pitch_std[0] = args.pitch_std
kw = dict(lr=args.learning_rate, betas=(0.9, 0.98), eps=1e-9,
weight_decay=args.weight_decay)
if args.optimizer == 'adam':
optimizer = FusedAdam(model.parameters(), **kw)
# optimizer = torch.optim.Adam(model.parameters(), **kw)
elif args.optimizer == 'lamb':
optimizer = FusedLAMB(model.parameters(), **kw)
# optimizer = torch.optim.Adam(model.parameters(), **kw)
else:
raise ValueError
scaler = torch.cuda.amp.GradScaler(enabled=args.amp)
if args.ema_decay > 0:
ema_model = copy.deepcopy(model)
else:
ema_model = None
if distributed_run:
model = DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank,
find_unused_parameters=True)
train_state = {'epoch': 1, 'total_iter': 1}
checkpointer = Checkpointer(args.output, args.keep_milestones)
checkpointer.maybe_load(model, optimizer, scaler, train_state, args,
ema_model)
start_epoch = train_state['epoch']
total_iter = train_state['total_iter']
criterion = FastPitchLoss(
dur_predictor_loss_scale=args.dur_predictor_loss_scale,
pitch_predictor_loss_scale=args.pitch_predictor_loss_scale,
attn_loss_scale=args.attn_loss_scale)
collate_fn = TTSCollate()
if args.local_rank == 0:
prepare_tmp(args.pitch_online_dir)
trainset = TTSDataset(audiopaths_and_text=args.training_files, **vars(args))
valset = TTSDataset(audiopaths_and_text=args.validation_files, **vars(args))
if distributed_run:
train_sampler = RepeatedDistributedSampler(args.trainloader_repeats,
trainset, drop_last=True)
val_sampler = DistributedSampler(valset)
shuffle = False
else:
train_sampler, val_sampler, shuffle = None, None, False ########### was True
# 4 workers are optimal on DGX-1 (from epoch 2 onwards)
kw = {'num_workers': args.num_workers, 'batch_size': args.batch_size,
'collate_fn': collate_fn}
train_loader = RepeatedDataLoader(args.trainloader_repeats, trainset,
shuffle=shuffle, drop_last=True,
sampler=train_sampler, pin_memory=True,
persistent_workers=True, **kw)
val_loader = DataLoader(valset, shuffle=False, sampler=val_sampler,
pin_memory=False, **kw)
if args.ema_decay:
mt_ema_params = init_multi_tensor_ema(model, ema_model)
model.train()
bmark_stats = BenchmarkStats()
torch.cuda.synchronize()
for epoch in range(start_epoch, args.epochs + 1):
epoch_start_time = time.perf_counter()
epoch_loss = 0.0
epoch_mel_loss = 0.0
epoch_num_frames = 0
epoch_frames_per_sec = 0.0
if distributed_run:
train_loader.sampler.set_epoch(epoch)
iter_loss = 0
iter_num_frames = 0
iter_meta = {}
iter_start_time = time.perf_counter()
epoch_iter = 1
for batch, accum_step in zip(train_loader,
cycle(range(1, args.grad_accumulation + 1))):
if accum_step == 1:
adjust_learning_rate(total_iter, optimizer, args.learning_rate,
args.warmup_steps)
model.zero_grad(set_to_none=True)
x, y, num_frames = batch_to_gpu(batch)
with torch.cuda.amp.autocast(enabled=args.amp):
y_pred = model(x)
loss, meta = criterion(y_pred, y)
if (args.kl_loss_start_epoch is not None
and epoch >= args.kl_loss_start_epoch):
if args.kl_loss_start_epoch == epoch and epoch_iter == 1:
print('Begin hard_attn loss')
_, _, _, _, _, _, _, _, attn_soft, attn_hard, _, _ = y_pred
binarization_loss = attention_kl_loss(attn_hard, attn_soft)
kl_weight = min((epoch - args.kl_loss_start_epoch) / args.kl_loss_warmup_epochs, 1.0) * args.kl_loss_weight
meta['kl_loss'] = binarization_loss.clone().detach() * kl_weight
loss += kl_weight * binarization_loss
else:
meta['kl_loss'] = torch.zeros_like(loss)
kl_weight = 0
binarization_loss = 0
loss /= args.grad_accumulation
meta = {k: v / args.grad_accumulation
for k, v in meta.items()}
if args.amp:
scaler.scale(loss).backward()
else:
loss.backward()
if distributed_run:
reduced_loss = reduce_tensor(loss.data, args.world_size).item()
reduced_num_frames = reduce_tensor(num_frames.data, 1).item()
meta = {k: reduce_tensor(v, args.world_size) for k, v in meta.items()}
else:
reduced_loss = loss.item()
reduced_num_frames = num_frames.item()
if np.isnan(reduced_loss):
raise Exception("loss is NaN")
iter_loss += reduced_loss
iter_num_frames += reduced_num_frames
iter_meta = {k: iter_meta.get(k, 0) + meta.get(k, 0) for k in meta}
if accum_step % args.grad_accumulation == 0:
logger.log_grads_tb(total_iter, model)
if args.amp:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.grad_clip_thresh)
scaler.step(optimizer)
scaler.update()
else:
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.grad_clip_thresh)
optimizer.step()
if args.ema_decay > 0.0:
apply_multi_tensor_ema(args.ema_decay, *mt_ema_params)
iter_mel_loss = iter_meta['mel_loss'].item()
iter_kl_loss = iter_meta['kl_loss'].item()
iter_time = time.perf_counter() - iter_start_time
epoch_frames_per_sec += iter_num_frames / iter_time
epoch_loss += iter_loss
epoch_num_frames += iter_num_frames
epoch_mel_loss += iter_mel_loss
num_iters = len(train_loader) // args.grad_accumulation
log((epoch, epoch_iter, num_iters), tb_total_steps=total_iter,
subset='train', data=OrderedDict([
('loss', iter_loss),
('mel_loss', iter_mel_loss),
('kl_loss', iter_kl_loss),
('kl_weight', kl_weight),
('frames/s', iter_num_frames / iter_time),
('took', iter_time),
('lrate', optimizer.param_groups[0]['lr'])]),
)
iter_loss = 0
iter_num_frames = 0
iter_meta = {}
iter_start_time = time.perf_counter()
if epoch_iter == num_iters:
break
epoch_iter += 1
total_iter += 1
# Finished epoch
epoch_loss /= epoch_iter
epoch_mel_loss /= epoch_iter
epoch_time = time.perf_counter() - epoch_start_time
log((epoch,), tb_total_steps=None, subset='train_avg',
data=OrderedDict([
('loss', epoch_loss),
('mel_loss', epoch_mel_loss),
('frames/s', epoch_num_frames / epoch_time),
('took', epoch_time)]),
)
bmark_stats.update(epoch_num_frames, epoch_loss, epoch_mel_loss,
epoch_time)
if epoch % args.validation_freq == 0:
validate(model, epoch, total_iter, criterion, val_loader,
distributed_run, batch_to_gpu, ema=False, local_rank=args.local_rank)
if args.ema_decay > 0:
validate(ema_model, epoch, total_iter, criterion, val_loader,
distributed_run, batch_to_gpu, args.local_rank, ema=True)
# save before making sched.step() for proper loading of LR
checkpointer.maybe_save(args, model, ema_model, optimizer, scaler,
epoch, total_iter, model_config)
logger.flush()
# Finished training
if len(bmark_stats) > 0:
log((), tb_total_steps=None, subset='train_avg',
data=bmark_stats.get(args.benchmark_epochs_num))
validate(model, None, total_iter, criterion, val_loader, distributed_run,
batch_to_gpu)
if __name__ == '__main__':
main()
|