Spaces:
Running
Running
File size: 16,407 Bytes
8146713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# MIT License
#
# Copyright (c) 2020 Jungil Kong
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# The following functions/classes were based on code from https://github.com/jik876/hifi-gan:
# ResBlock1, ResBlock2, Generator, DiscriminatorP, DiscriminatorS, MultiScaleDiscriminator,
# MultiPeriodDiscriminator, feature_loss, discriminator_loss, generator_loss,
# init_weights, get_padding
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
from common.stft import STFT
from common.utils import AttrDict, init_weights, get_padding
LRELU_SLOPE = 0.1
class NoAMPConv1d(Conv1d):
def __init__(self, *args, no_amp=False, **kwargs):
super().__init__(*args, **kwargs)
self.no_amp = no_amp
def _cast(self, x, dtype):
if isinstance(x, (list, tuple)):
return [self._cast(t, dtype) for t in x]
else:
return x.to(dtype)
def forward(self, *args):
if not self.no_amp:
return super().forward(*args)
with torch.cuda.amp.autocast(enabled=False):
return self._cast(
super().forward(*self._cast(args, torch.float)), args[0].dtype)
class ResBlock1(nn.Module):
__constants__ = ['lrelu_slope']
def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3, 5)):
super().__init__()
self.conf = conf
self.lrelu_slope = LRELU_SLOPE
ch, ks = channels, kernel_size
self.convs1 = nn.Sequential(*[
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[0]), dilation[0])),
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[1]), dilation[1])),
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[2]), dilation[2])),
])
self.convs2 = nn.Sequential(*[
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))),
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))),
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))),
])
self.convs1.apply(init_weights)
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, self.lrelu_slope)
xt = c1(xt)
xt = F.leaky_relu(xt, self.lrelu_slope)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(nn.Module):
__constants__ = ['lrelu_slope']
def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3)):
super().__init__()
self.conf = conf
ch, ks = channels, kernel_size
self.convs = nn.ModuleList([
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[0]), dilation[0])),
weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[1]), dilation[1])),
])
self.convs.apply(init_weights)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, self.lrelu_slope)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Generator(nn.Module):
__constants__ = ['lrelu_slope', 'num_kernels', 'num_upsamples']
def __init__(self, conf):
super().__init__()
conf = AttrDict(conf)
self.conf = conf
self.num_kernels = len(conf.resblock_kernel_sizes)
self.num_upsamples = len(conf.upsample_rates)
self.conv_pre = weight_norm(
Conv1d(80, conf.upsample_initial_channel, 7, 1, padding=3))
self.lrelu_slope = LRELU_SLOPE
resblock = ResBlock1 if conf.resblock == '1' else ResBlock2
self.ups = []
for i, (u, k) in enumerate(zip(conf.upsample_rates,
conf.upsample_kernel_sizes)):
self.ups.append(weight_norm(
ConvTranspose1d(conf.upsample_initial_channel // (2 ** i),
conf.upsample_initial_channel // (2 ** (i + 1)),
k, u, padding=(k-u)//2)))
self.ups = nn.Sequential(*self.ups)
self.resblocks = []
for i in range(len(self.ups)):
resblock_list = []
ch = conf.upsample_initial_channel // (2 ** (i + 1))
for j, (k, d) in enumerate(zip(conf.resblock_kernel_sizes,
conf.resblock_dilation_sizes)):
resblock_list.append(resblock(conf, ch, k, d))
resblock_list = nn.Sequential(*resblock_list)
self.resblocks.append(resblock_list)
self.resblocks = nn.Sequential(*self.resblocks)
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
def load_state_dict(self, state_dict, strict=True):
# Fallback for old checkpoints (pre-ONNX fix)
new_sd = {}
for k, v in state_dict.items():
new_k = k
if 'resblocks' in k:
parts = k.split(".")
# only do this is the checkpoint type is older
if len(parts) == 5:
layer = int(parts[1])
new_layer = f"{layer//3}.{layer%3}"
new_k = f"resblocks.{new_layer}.{'.'.join(parts[2:])}"
new_sd[new_k] = v
# Fix for conv1d/conv2d/NHWC
curr_sd = self.state_dict()
for key in new_sd:
len_diff = len(new_sd[key].size()) - len(curr_sd[key].size())
if len_diff == -1:
new_sd[key] = new_sd[key].unsqueeze(-1)
elif len_diff == 1:
new_sd[key] = new_sd[key].squeeze(-1)
super().load_state_dict(new_sd, strict=strict)
def forward(self, x):
x = self.conv_pre(x)
for upsample_layer, resblock_group in zip(self.ups, self.resblocks):
x = F.leaky_relu(x, self.lrelu_slope)
x = upsample_layer(x)
xs = 0
for resblock in resblock_group:
xs += resblock(x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print('HiFi-GAN: Removing weight norm.')
for l in self.ups:
remove_weight_norm(l)
for group in self.resblocks:
for block in group:
block.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class Denoiser(nn.Module):
""" Removes model bias from audio produced with hifigan """
def __init__(self, hifigan, filter_length=1024, n_overlap=4,
win_length=1024, mode='zeros', device="cpu", **infer_kw):
super().__init__()
self.stft = STFT(filter_length=filter_length,
hop_length=int(filter_length/n_overlap),
#win_length=win_length).cuda() # was like this
win_length=win_length, device=device)
for name, p in hifigan.named_parameters():
if name.endswith('.weight'):
dtype = p.dtype
device = p.device
break
mel_init = {'zeros': torch.zeros, 'normal': torch.randn}[mode]
mel_input = mel_init((1, 80, 88), dtype=dtype, device=device)
with torch.no_grad():
bias_audio = hifigan(mel_input, **infer_kw).float()
if len(bias_audio.size()) > 2:
bias_audio = bias_audio.squeeze(0)
elif len(bias_audio.size()) < 2:
bias_audio = bias_audio.unsqueeze(0)
assert len(bias_audio.size()) == 2
bias_spec, _ = self.stft.transform(bias_audio)
self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None])
def forward(self, audio, strength=0.1):
audio_spec, audio_angles = self.stft.transform(audio.float())
audio_spec_denoised = audio_spec - self.bias_spec * strength
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles)
return audio_denoised
class DiscriminatorP(nn.Module):
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super().__init__()
self.period = period
norm_f = spectral_norm if use_spectral_norm else weight_norm
ks = kernel_size
self.convs = nn.ModuleList([
norm_f(Conv2d(1, 32, (ks, 1), (stride, 1), (get_padding(5, 1), 0))),
norm_f(Conv2d(32, 128, (ks, 1), (stride, 1), (get_padding(5, 1), 0))),
norm_f(Conv2d(128, 512, (ks, 1), (stride, 1), (get_padding(5, 1), 0))),
norm_f(Conv2d(512, 1024, (ks, 1), (stride, 1), (get_padding(5, 1), 0))),
norm_f(Conv2d(1024, 1024, (ks, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
fmap = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
def share_params_of(self, dp):
assert len(self.convs) == len(dp.convs)
for c1, c2 in zip(self.convs, dp.convs):
c1.weight = c2.weight
c1.bias = c2.bias
class MultiPeriodDiscriminator(nn.Module):
def __init__(self, periods, concat_fwd=False):
super().__init__()
layers = [DiscriminatorP(p) for p in periods]
self.discriminators = nn.ModuleList(layers)
self.concat_fwd = concat_fwd
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
if self.concat_fwd:
y_ds, fmaps = d(concat_discr_input(y, y_hat))
y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps)
else:
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(nn.Module):
def __init__(self, use_spectral_norm=False, no_amp_grouped_conv=False):
super().__init__()
norm_f = spectral_norm if use_spectral_norm else weight_norm
self.convs = nn.ModuleList([
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
norm_f(NoAMPConv1d(128, 256, 41, 2, groups=16, padding=20, no_amp=no_amp_grouped_conv)),
norm_f(NoAMPConv1d(256, 512, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)),
norm_f(NoAMPConv1d(512, 1024, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)),
norm_f(NoAMPConv1d(1024, 1024, 41, 1, groups=16, padding=20, no_amp=no_amp_grouped_conv)),
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
# x = l(x.unsqueeze(-1)).squeeze(-1)
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiScaleDiscriminator(nn.Module):
def __init__(self, no_amp_grouped_conv=False, concat_fwd=False):
super().__init__()
self.discriminators = nn.ModuleList([
DiscriminatorS(use_spectral_norm=True, no_amp_grouped_conv=no_amp_grouped_conv),
DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv),
DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv),
])
self.meanpools = nn.ModuleList([
AvgPool1d(4, 2, padding=1),
AvgPool1d(4, 2, padding=1)
])
self.concat_fwd = concat_fwd
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
if self.concat_fwd:
ys = concat_discr_input(y, y_hat)
if i != 0:
ys = self.meanpools[i-1](ys)
y_ds, fmaps = d(ys)
y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps)
else:
if i != 0:
y = self.meanpools[i-1](y)
y_hat = self.meanpools[i-1](y_hat)
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
def concat_discr_input(y, y_hat):
return torch.cat((y, y_hat), dim=0)
def split_discr_output(y_ds, fmaps):
y_d_r, y_d_g = torch.chunk(y_ds, 2, dim=0)
fmap_r, fmap_g = zip(*(torch.chunk(f, 2, dim=0) for f in fmaps))
return y_d_r, y_d_g, fmap_r, fmap_g
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss*2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1-dr)**2)
g_loss = torch.mean(dg**2)
loss += (r_loss + g_loss)
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1-dg)**2)
gen_losses.append(l)
loss += l
return loss, gen_losses
|