Spaces:
Runtime error
Runtime error
Image Captinoning and Segementation Created
Browse files- app.py +59 -0
- image_captining.ipynb +0 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from PIL import Image
|
6 |
+
import tempfile
|
7 |
+
from torchvision.models.detection import maskrcnn_resnet50_fpn
|
8 |
+
from torchvision.transforms import functional as F
|
9 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
10 |
+
|
11 |
+
@st.cache_resource
|
12 |
+
def load_models():
|
13 |
+
seg_model = maskrcnn_resnet50_fpn(pretrained=True)
|
14 |
+
seg_model.eval()
|
15 |
+
|
16 |
+
caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
17 |
+
caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
18 |
+
|
19 |
+
return seg_model, caption_model, caption_processor
|
20 |
+
|
21 |
+
seg_model, caption_model, caption_processor = load_models()
|
22 |
+
|
23 |
+
st.title("🖼️ Image Segmentation & Captioning App")
|
24 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
25 |
+
|
26 |
+
if uploaded_file is not None:
|
27 |
+
image = Image.open(uploaded_file).convert("RGB")
|
28 |
+
st.image(image, caption="Original Image", use_column_width=True)
|
29 |
+
|
30 |
+
img_np = np.array(image)
|
31 |
+
img_tensor = F.to_tensor(img_np)
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
pred = seg_model([img_tensor])[0]
|
35 |
+
|
36 |
+
def apply_masks(img, pred, threshold=0.7):
|
37 |
+
img = img.copy()
|
38 |
+
for i in range(len(pred["boxes"])):
|
39 |
+
score = pred["scores"][i].item()
|
40 |
+
if score < threshold:
|
41 |
+
continue
|
42 |
+
mask = pred["masks"][i, 0].mul(255).byte().cpu().numpy()
|
43 |
+
img[mask > 128] = [0, 255, 0]
|
44 |
+
return img
|
45 |
+
|
46 |
+
masked_img = apply_masks(img_np, pred)
|
47 |
+
st.image(masked_img, caption="Segmented Image", use_column_width=True)
|
48 |
+
|
49 |
+
inputs = caption_processor(images=image, return_tensors="pt")
|
50 |
+
out = caption_model.generate(**inputs)
|
51 |
+
caption = caption_processor.decode(out[0], skip_special_tokens=True)
|
52 |
+
st.markdown(f"**📝 Caption:** _{caption}_")
|
53 |
+
|
54 |
+
result_img = Image.fromarray(masked_img)
|
55 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
56 |
+
result_img.save(temp_file.name)
|
57 |
+
|
58 |
+
with open(temp_file.name, "rb") as f:
|
59 |
+
st.download_button("📥 Download Output", f, file_name="output_result.jpg", mime="image/jpeg")
|
image_captining.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
transformers
|
5 |
+
Pillow
|
6 |
+
opencv-python-headless
|
7 |
+
timm
|