import streamlit as st import torch import numpy as np import cv2 from PIL import Image import tempfile from torchvision.models.detection import maskrcnn_resnet50_fpn from torchvision.transforms import functional as F from transformers import BlipProcessor, BlipForConditionalGeneration @st.cache_resource def load_models(): seg_model = maskrcnn_resnet50_fpn(pretrained=True) seg_model.eval() caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") return seg_model, caption_model, caption_processor seg_model, caption_model, caption_processor = load_models() st.title("🖼️ Image Segmentation & Captioning App") uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Original Image", use_column_width=True) img_np = np.array(image) img_tensor = F.to_tensor(img_np) with torch.no_grad(): pred = seg_model([img_tensor])[0] def apply_masks(img, pred, threshold=0.7): img = img.copy() for i in range(len(pred["boxes"])): score = pred["scores"][i].item() if score < threshold: continue mask = pred["masks"][i, 0].mul(255).byte().cpu().numpy() img[mask > 128] = [0, 255, 0] return img masked_img = apply_masks(img_np, pred) st.image(masked_img, caption="Segmented Image", use_column_width=True) inputs = caption_processor(images=image, return_tensors="pt") out = caption_model.generate(**inputs) caption = caption_processor.decode(out[0], skip_special_tokens=True) st.markdown(f"**📝 Caption:** _{caption}_") result_img = Image.fromarray(masked_img) temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") result_img.save(temp_file.name) with open(temp_file.name, "rb") as f: st.download_button("📥 Download Output", f, file_name="output_result.jpg", mime="image/jpeg")