File Uploading
Browse files- README.md +1 -10
- SERP.py +88 -0
- apify.py +65 -0
- nlp_parsed.py +142 -0
- postgres_db.py +247 -0
- requirements.txt +8 -0
- saral-ai.py +301 -0
- saral_ai_api.py +231 -0
- templates/index.html +673 -0
- validate.py +83 -0
README.md
CHANGED
@@ -1,10 +1 @@
|
|
1 |
-
|
2 |
-
title: Saral Ai
|
3 |
-
emoji: 📚
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: green
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
---
|
9 |
-
|
10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
# SARAL-AI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SERP.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from postgres_db import fetch_from_saral_data , data_input , check_completeness, cur, get_connection
|
5 |
+
|
6 |
+
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
SERP_API_KEY = os.getenv("SERP_API_KEY")
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
def query_making(data):
|
16 |
+
query = "site:linkedin.com/in"
|
17 |
+
|
18 |
+
if data['job_title']:
|
19 |
+
query += f' "{data["job_title"]}"'
|
20 |
+
|
21 |
+
if data['skills']:
|
22 |
+
for i in data['skills']:
|
23 |
+
query += f' "{i}"'
|
24 |
+
|
25 |
+
if data['experience']:
|
26 |
+
exp = data["experience"]
|
27 |
+
query += f' "{exp} years" OR "{exp}+ years"'
|
28 |
+
|
29 |
+
if data['location']:
|
30 |
+
if type(data['location']) == list:
|
31 |
+
for i in data['location']:
|
32 |
+
query += f' "{i}"'
|
33 |
+
else:
|
34 |
+
query += f' "{data["location"]}"'
|
35 |
+
|
36 |
+
|
37 |
+
if data['work_preference']:
|
38 |
+
query += f' "{data["work_preference"]}"'
|
39 |
+
|
40 |
+
if data['job_type']:
|
41 |
+
query += f' "{data["job_type"]}"'
|
42 |
+
|
43 |
+
|
44 |
+
add_keywords = ' -"job" -"jobs" -"hiring" -"vacancy" -"openings" -"career" -"apply"'
|
45 |
+
query += add_keywords
|
46 |
+
# print(query)
|
47 |
+
|
48 |
+
return query, data['location']
|
49 |
+
|
50 |
+
|
51 |
+
def serp_api_call(query,start = 0, results_per_page = 10):
|
52 |
+
data = None
|
53 |
+
|
54 |
+
# SERP API CALL
|
55 |
+
|
56 |
+
params = {
|
57 |
+
"engine": "google",
|
58 |
+
"q": query.strip(),
|
59 |
+
"api_key": SERP_API_KEY,
|
60 |
+
"hl": "en",
|
61 |
+
"gl": "in",
|
62 |
+
"google_domain": "google.co.in",
|
63 |
+
"location": "India",
|
64 |
+
"num": results_per_page,
|
65 |
+
"start": start,
|
66 |
+
"safe": "active"
|
67 |
+
|
68 |
+
}
|
69 |
+
|
70 |
+
try:
|
71 |
+
response = requests.get("https://serpapi.com/search", params=params)
|
72 |
+
if response.status_code == 200:
|
73 |
+
data = response.json()
|
74 |
+
|
75 |
+
else:
|
76 |
+
print(f"Request failed with status code: {response.status_code}")
|
77 |
+
except:
|
78 |
+
pass
|
79 |
+
|
80 |
+
return data
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
apify.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from apify_client import ApifyClient
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import os
|
4 |
+
|
5 |
+
load_dotenv()
|
6 |
+
|
7 |
+
APIFY_API_KEY = os.getenv("APIFY_API_TOKEN")
|
8 |
+
|
9 |
+
|
10 |
+
linkedin_profiles = {
|
11 |
+
"1": "https://linkedin.com/in/ramya-rajendran-730b46a9",
|
12 |
+
"2": "https://linkedin.com/in/dhruv-patel-39a333263",
|
13 |
+
"3": "https://linkedin.com/in/harsh-patel9797",
|
14 |
+
"4": "https://linkedin.com/in/denish-patel-64a8bb183",
|
15 |
+
"5": "https://linkedin.com/in/swapnildjoshi",
|
16 |
+
"6": "https://linkedin.com/in/bhavin-vaghasiya-82839522a",
|
17 |
+
"7": "https://linkedin.com/in/dharmesh-sharma-6a09a0192",
|
18 |
+
"8": "https://linkedin.com/in/bhawanii-raajpurohit-72991b1b5",
|
19 |
+
"9": "https://linkedin.com/in/trushali-miyani-69aa26276",
|
20 |
+
"10": "https://linkedin.com/in/isha-bhanderi-244638246",
|
21 |
+
}
|
22 |
+
|
23 |
+
client = ApifyClient(APIFY_API_KEY)
|
24 |
+
|
25 |
+
def apify_call(linkedin_profiles):
|
26 |
+
list_links = list(linkedin_profiles.values())
|
27 |
+
|
28 |
+
print(list_links)
|
29 |
+
|
30 |
+
run_input = {
|
31 |
+
"profileUrls": list_links
|
32 |
+
}
|
33 |
+
|
34 |
+
run = client.actor("2SyF0bVxmgGr8IVCZ").call(run_input=run_input)
|
35 |
+
|
36 |
+
cleaned_profiles = []
|
37 |
+
|
38 |
+
|
39 |
+
for idx, item in enumerate(client.dataset(run["defaultDatasetId"]).iterate_items(),start=1):
|
40 |
+
# apify_json[idx] = item
|
41 |
+
|
42 |
+
# raw_skills = item.get("skills", [])
|
43 |
+
# skill_titles = [s.get("title") for s in raw_skills if "title" in s]
|
44 |
+
|
45 |
+
# profile_data = {
|
46 |
+
# "fullName":item.get("fullName"),
|
47 |
+
# "profilePic": item.get("profilePic"),
|
48 |
+
# "linkedinUrl":item.get("linkedinUrl"),
|
49 |
+
# "headline":item.get("headline"),
|
50 |
+
# "about":item.get("about"),
|
51 |
+
# "skills":skill_titles,
|
52 |
+
# "email": item.get("email"),
|
53 |
+
# "addressWithCountry": item.get("addressWithCountry"),
|
54 |
+
# "experience": item.get("experience")
|
55 |
+
# }
|
56 |
+
|
57 |
+
# profile_data = {k: v for k, v in profile_data.items() if v}
|
58 |
+
cleaned_profiles.append(item)
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
return cleaned_profiles
|
64 |
+
|
65 |
+
|
nlp_parsed.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from openai import AzureOpenAI
|
5 |
+
import json
|
6 |
+
from postgres_db import store_prompt, conn
|
7 |
+
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
SERP_API_KEY = os.getenv("SERP_API_KEY")
|
11 |
+
endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
|
12 |
+
api_key = os.getenv("AZURE_OPENAI_API_KEY")
|
13 |
+
api_version = os.getenv("AZURE_OPENAI_API_VERSION")
|
14 |
+
deployment = os.getenv("AZURE_OPENAI_DEPLOYMENT")
|
15 |
+
|
16 |
+
|
17 |
+
try:
|
18 |
+
client = AzureOpenAI(api_key=api_key, api_version=api_version, azure_endpoint=endpoint)
|
19 |
+
except Exception as e:
|
20 |
+
print(f"Failed to initialize Azure OpenAI client: {e}")
|
21 |
+
|
22 |
+
|
23 |
+
def parse_recruiter_query(query):
|
24 |
+
"""Parse recruiter query using AI to extract structured data"""
|
25 |
+
if not client:
|
26 |
+
return {"error": "Azure OpenAI client not available"}
|
27 |
+
|
28 |
+
try:
|
29 |
+
system_prompt = """You are an AI assistant that extracts structured recruitment information from natural language queries.
|
30 |
+
|
31 |
+
Fields to extract:
|
32 |
+
- job_title: ONLY the exact position title they're hiring for (e.g., "Python Developer", "Data Scientist").
|
33 |
+
DO NOT include phrases like "looking for", "need a", "hiring", etc.
|
34 |
+
- skills: Array of required technical skills mentioned (e.g., ["Python", "Django", "SQL"])
|
35 |
+
- experience: Required experience in years (numeric value or range). For fresher candidates, use "fresher" exactly.
|
36 |
+
- location: Array of city names if multiple cities are mentioned, or single city name as Array if only one city is mentioned.
|
37 |
+
- work_preference: Work mode preference - one of: "remote", "onsite", "hybrid", null
|
38 |
+
- job_type: Employment type - one of: "full-time", "part-time", "contract", "internship", null
|
39 |
+
- is_indian: true if the job location(s) are in India, false otherwise.
|
40 |
+
IMPORTANT: If no location is mentioned, always set is_indian = true.
|
41 |
+
|
42 |
+
CRITICAL INSTRUCTIONS:
|
43 |
+
1. For job_title, NEVER include phrases like "looking for", "need", "hiring", etc.
|
44 |
+
2. For experience, if the query mentions "fresher", "fresh graduate", "entry level", use exactly "fresher"
|
45 |
+
3. For is_indian, check the location(s). If the location(s) are Indian cities or the query context is India-based, return true.
|
46 |
+
If no location is mentioned at all, default to true.
|
47 |
+
4. Return ONLY valid JSON without any explanation or additional text.
|
48 |
+
5. Use your knowledge to recognize job titles across all industries and domains."""
|
49 |
+
|
50 |
+
user_prompt = f"""Extract recruitment information from this query: "{query}"
|
51 |
+
|
52 |
+
Examples of correct extraction:
|
53 |
+
|
54 |
+
Input: "We are looking for a Python developer with 3 years experience from Mumbai"
|
55 |
+
Output: {{"job_title": "Python Developer", "skills": ["Python"], "experience": "3", "location": ["Mumbai"], "work_preference": null, "job_type": null, "is_indian": true}}
|
56 |
+
|
57 |
+
Input: "Need a senior React frontend developer with Redux, TypeScript, 5+ years"
|
58 |
+
Output: {{"job_title": "React Frontend Developer", "skills": ["React", "Redux", "TypeScript"], "experience": "5+", "location": null, "work_preference": null, "job_type": null, "is_indian": true}}
|
59 |
+
|
60 |
+
Input: "python developer with 2 year of experience from surat, ahmedabad and mumbai"
|
61 |
+
Output: {{"job_title": "Python Developer", "skills": ["Python"], "experience": "2", "location": ["Surat", "Ahmedabad", "Mumbai"], "work_preference": null, "job_type": null, "is_indian": true}}
|
62 |
+
|
63 |
+
Input: "Remote React developer needed, 5 years experience, Redux, TypeScript"
|
64 |
+
Output: {{"job_title": "React Developer", "skills": ["React", "Redux", "TypeScript"], "experience": "5", "location": null, "work_preference": "remote", "job_type": null, "is_indian": true}}
|
65 |
+
|
66 |
+
Input: "Looking for fresher Java developer from Delhi"
|
67 |
+
Output: {{"job_title": "Java Developer", "skills": ["Java"], "experience": "fresher", "location": ["Delhi"], "work_preference": null, "job_type": null, "is_indian": true}}
|
68 |
+
|
69 |
+
Now extract from the query: "{query}"
|
70 |
+
|
71 |
+
Remember:
|
72 |
+
1. Extract ONLY the job title without any prefixes like "looking for", "need", etc.
|
73 |
+
2. Extract ONLY the city/location name without additional text.
|
74 |
+
3. For fresher candidates, use exactly "fresher" as experience value.
|
75 |
+
4. For is_indian: true if job location(s) are Indian, false otherwise. If no location is provided, always return true.
|
76 |
+
5. Return ONLY valid JSON."""
|
77 |
+
|
78 |
+
response = client.chat.completions.create(
|
79 |
+
model=deployment,
|
80 |
+
messages=[
|
81 |
+
{"role": "system", "content": system_prompt},
|
82 |
+
{"role": "user", "content": user_prompt}
|
83 |
+
],
|
84 |
+
temperature=0.0,
|
85 |
+
max_tokens=500
|
86 |
+
)
|
87 |
+
|
88 |
+
return json.loads(response.choices[0].message.content)
|
89 |
+
|
90 |
+
except json.JSONDecodeError:
|
91 |
+
return {"error": "Invalid JSON returned from AI"}
|
92 |
+
except Exception as e:
|
93 |
+
return {"error": f"Unexpected error: {str(e)}"}
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
def prompt_enhancer(prompt: str) -> str:
|
98 |
+
"""Enhance recruiter prompt to be clearer and more structured"""
|
99 |
+
if not client:
|
100 |
+
return prompt # fallback: return original if Azure client not available
|
101 |
+
|
102 |
+
try:
|
103 |
+
system_prompt = """You are an AI assistant that enhances recruiter job search prompts.
|
104 |
+
Your goal is to:
|
105 |
+
1. Clean up grammar and spelling mistakes.
|
106 |
+
2. Expand shorthand into full professional wording.
|
107 |
+
3. Preserve all important details: job title, skills, experience, location, work mode, job type.
|
108 |
+
4. Do NOT invent new requirements — only clarify what’s already in the query.
|
109 |
+
5. Do not copy examples literally — adapt based on the actual input.
|
110 |
+
6. Return ONLY the enhanced recruiter prompt as plain text (no JSON)."""
|
111 |
+
|
112 |
+
user_prompt = f"""Rewrite and enhance this recruiter query for clarity:
|
113 |
+
|
114 |
+
Input: "{prompt}"
|
115 |
+
|
116 |
+
Example Enhancements:
|
117 |
+
- "python dev 2yr exp surat" → "Looking for a Python Developer with 2 years of experience in Surat."
|
118 |
+
- "need react js fresher remote" → "Hiring a React.js Developer at fresher level for a remote role."
|
119 |
+
- "java 5+ exp ahmedabad onsite" → "Looking for a Java Developer with over 5 years of experience for an onsite role in Ahmedabad."
|
120 |
+
- "data analyst 3 years bangalore hybrid" → "Seeking a Data Analyst with 3 years of experience for a hybrid position in Bangalore."
|
121 |
+
- "ui ux designer fresher mumbai internship" → "Hiring a UI/UX Designer, fresher level, for an internship role in Mumbai."
|
122 |
+
|
123 |
+
Now enhance this query: "{prompt}"
|
124 |
+
"""
|
125 |
+
|
126 |
+
response = client.chat.completions.create(
|
127 |
+
model=deployment,
|
128 |
+
messages=[
|
129 |
+
{"role": "system", "content": system_prompt},
|
130 |
+
{"role": "user", "content": user_prompt}
|
131 |
+
],
|
132 |
+
temperature=0.5, # slightly more creative
|
133 |
+
max_tokens=200
|
134 |
+
)
|
135 |
+
|
136 |
+
enhanced_prompt = response.choices[0].message.content.strip()
|
137 |
+
return enhanced_prompt
|
138 |
+
|
139 |
+
except Exception as e:
|
140 |
+
print(f"Error in prompt_enhancer: {e}")
|
141 |
+
return prompt # fallback to original
|
142 |
+
|
postgres_db.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import psycopg2
|
2 |
+
import json
|
3 |
+
from datetime import datetime, timedelta
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
hostname = "13.201.135.196"
|
8 |
+
database = "saral_ai"
|
9 |
+
username = "saral_user"
|
10 |
+
pwd = "8k$ScgT97y9£>D"
|
11 |
+
port_id = 5432
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
conn = None
|
16 |
+
cur = None
|
17 |
+
|
18 |
+
|
19 |
+
def get_connection():
|
20 |
+
return psycopg2.connect(
|
21 |
+
host=hostname,
|
22 |
+
dbname=database,
|
23 |
+
user=username,
|
24 |
+
password=pwd,
|
25 |
+
port=port_id
|
26 |
+
)
|
27 |
+
|
28 |
+
def check_completeness(cur, name, location, linkedin_url, headline, skills, experience):
|
29 |
+
is_complete = True
|
30 |
+
message = "this data is complete"
|
31 |
+
|
32 |
+
required_fields = [name, location, linkedin_url]
|
33 |
+
for field in required_fields:
|
34 |
+
if field in [None, "", []]:
|
35 |
+
is_complete = False
|
36 |
+
message = "missing required fields"
|
37 |
+
break
|
38 |
+
|
39 |
+
cur.execute("SELECT id FROM saral_data WHERE linkedin_url = %s", (linkedin_url,))
|
40 |
+
existing = cur.fetchone()
|
41 |
+
if existing:
|
42 |
+
return False, "this data is duplicate", False
|
43 |
+
|
44 |
+
optional_fields = [headline, skills, experience]
|
45 |
+
for field in optional_fields:
|
46 |
+
if field in [None, "", []]:
|
47 |
+
is_complete = False
|
48 |
+
message = "some optional fields missing"
|
49 |
+
break
|
50 |
+
|
51 |
+
return True, message, is_complete
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
def data_input(json_data):
|
60 |
+
insert_script = '''
|
61 |
+
INSERT INTO saral_data
|
62 |
+
(name, location, email, linkedin_url, headline, skills, about, experience, profile_pic, is_complete, created_at)
|
63 |
+
VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)
|
64 |
+
'''
|
65 |
+
with conn.cursor() as cur:
|
66 |
+
for d in json_data:
|
67 |
+
name = d.get("fullName")
|
68 |
+
location = d.get("addressWithCountry")
|
69 |
+
email = d.get("email")
|
70 |
+
linkedin_url = d.get("linkedinUrl")
|
71 |
+
headline = d.get("headline")
|
72 |
+
profile_pic = d.get("profilePic")
|
73 |
+
|
74 |
+
# Safe parsing of skills
|
75 |
+
skills_raw = d.get("skills", [])
|
76 |
+
if isinstance(skills_raw, str):
|
77 |
+
try:
|
78 |
+
skills_raw = json.loads(skills_raw)
|
79 |
+
except:
|
80 |
+
skills_raw = []
|
81 |
+
skills_list = [s.get("title") for s in skills_raw if isinstance(s, dict)]
|
82 |
+
skills = json.dumps(skills_list)
|
83 |
+
|
84 |
+
# Safe parsing of experiences
|
85 |
+
experience_raw = d.get("experiences", [])
|
86 |
+
if isinstance(experience_raw, str):
|
87 |
+
try:
|
88 |
+
experience_raw = json.loads(experience_raw)
|
89 |
+
except:
|
90 |
+
experience_raw = []
|
91 |
+
experience = json.dumps(experience_raw)
|
92 |
+
|
93 |
+
about = d.get("about")
|
94 |
+
|
95 |
+
success, message, is_complete = check_completeness(
|
96 |
+
cur, name, location, linkedin_url, headline, skills_list, experience_raw
|
97 |
+
)
|
98 |
+
print(message)
|
99 |
+
|
100 |
+
if not is_complete:
|
101 |
+
continue
|
102 |
+
|
103 |
+
created_at = datetime.now()
|
104 |
+
cur.execute(
|
105 |
+
insert_script,
|
106 |
+
(
|
107 |
+
name, location, email, linkedin_url, headline,
|
108 |
+
skills, about, experience, profile_pic, is_complete, created_at
|
109 |
+
)
|
110 |
+
)
|
111 |
+
|
112 |
+
conn.commit()
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
def fetch_from_saral_data(serp_data, conn):
|
117 |
+
if not serp_data or not isinstance(serp_data, dict):
|
118 |
+
print("⚠️ fetch_from_saral_data: serp_data is None or not a dict")
|
119 |
+
return [], [] # return empty lists safely
|
120 |
+
|
121 |
+
results = []
|
122 |
+
remaining = []
|
123 |
+
one_month_ago = datetime.now() - timedelta(days=30)
|
124 |
+
|
125 |
+
serp_json = {}
|
126 |
+
for idx, result in enumerate(serp_data.get("organic_results", []), start=1):
|
127 |
+
link = result.get("link")
|
128 |
+
if link and ("linkedin.com/in/" in link or "in.linkedin.com/in/" in link):
|
129 |
+
clean_link = link.replace("in.linkedin.com", "linkedin.com")
|
130 |
+
serp_json[idx] = clean_link
|
131 |
+
|
132 |
+
# create a fresh cursor
|
133 |
+
with conn.cursor() as cur:
|
134 |
+
for link in serp_json.values():
|
135 |
+
cur.execute("""
|
136 |
+
SELECT name, location, email, linkedin_url, headline, skills, about, experience, profile_pic, is_complete, created_at
|
137 |
+
FROM saral_data
|
138 |
+
WHERE linkedin_url = %s AND created_at >= %s
|
139 |
+
|
140 |
+
""", (link, one_month_ago))
|
141 |
+
|
142 |
+
row = cur.fetchone()
|
143 |
+
if row:
|
144 |
+
results.append({
|
145 |
+
"fullName": row[0] if row[0] else "Unknown",
|
146 |
+
"addressWithCountry": row[1] if row[1] else "Unknown",
|
147 |
+
"email": row[2] if row[2] else "-",
|
148 |
+
"linkedinUrl": row[3] if row[3] else "-",
|
149 |
+
"headline": row[4] if row[4] else "-",
|
150 |
+
"skills": row[5] if row[5] else [],
|
151 |
+
"about": row[6] if row[6] else "",
|
152 |
+
"experiences": row[7] if row[7] else [],
|
153 |
+
"profilePic": row[8] if row[8] else None,
|
154 |
+
"is_complete": row[9],
|
155 |
+
"created_at": row[10]
|
156 |
+
})
|
157 |
+
|
158 |
+
|
159 |
+
else:
|
160 |
+
remaining.append(link)
|
161 |
+
|
162 |
+
return results, remaining
|
163 |
+
|
164 |
+
|
165 |
+
def store_prompt(conn, prompt: str, parsed_json: dict):
|
166 |
+
job_title = parsed_json.get("job_title")
|
167 |
+
skills = parsed_json.get("skills", [])
|
168 |
+
experience = parsed_json.get("experience")
|
169 |
+
location = parsed_json.get("location", [])
|
170 |
+
work_preference = parsed_json.get("work_preference")
|
171 |
+
job_type = parsed_json.get("job_type")
|
172 |
+
is_indian = parsed_json.get("is_indian")
|
173 |
+
|
174 |
+
try:
|
175 |
+
with conn.cursor() as cur:
|
176 |
+
cur.execute("""
|
177 |
+
INSERT INTO saral_prompts
|
178 |
+
(prompt, job_title, skills, experience, location, work_preference, job_type, created_at,is_indian)
|
179 |
+
VALUES (%s, %s, %s, %s, %s, %s, %s, %s,%s)
|
180 |
+
""", (
|
181 |
+
prompt,
|
182 |
+
job_title,
|
183 |
+
json.dumps(skills) if skills else None, # ensure proper type
|
184 |
+
experience,
|
185 |
+
location if location else None,
|
186 |
+
work_preference,
|
187 |
+
job_type,
|
188 |
+
datetime.now(),
|
189 |
+
is_indian
|
190 |
+
))
|
191 |
+
conn.commit()
|
192 |
+
except Exception as e:
|
193 |
+
print("Error inserting prompt:", e)
|
194 |
+
conn.rollback()
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
try:
|
200 |
+
conn = psycopg2.connect(
|
201 |
+
host=hostname, dbname=database, user=username, password=pwd, port=port_id
|
202 |
+
)
|
203 |
+
|
204 |
+
cur = conn.cursor()
|
205 |
+
|
206 |
+
create_script = """
|
207 |
+
CREATE TABLE IF NOT EXISTS saral_data (
|
208 |
+
id SERIAL PRIMARY KEY,
|
209 |
+
name TEXT,
|
210 |
+
location TEXT,
|
211 |
+
email TEXT,
|
212 |
+
linkedin_url TEXT,
|
213 |
+
headline TEXT,
|
214 |
+
skills JSONB,
|
215 |
+
about TEXT,
|
216 |
+
experience JSONB,
|
217 |
+
profile_pic TEXT,
|
218 |
+
is_complete BOOLEAN,
|
219 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
220 |
+
);
|
221 |
+
"""
|
222 |
+
|
223 |
+
# cur.execute(create_script)
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
conn.commit()
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
except Exception as error:
|
234 |
+
print(error)
|
235 |
+
|
236 |
+
|
237 |
+
finally:
|
238 |
+
# if cur is not None:
|
239 |
+
# cur.close()
|
240 |
+
# if conn is not None:
|
241 |
+
# conn.close()
|
242 |
+
pass
|
243 |
+
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
streamlit
|
3 |
+
python-dotenv
|
4 |
+
openai
|
5 |
+
apify-client
|
6 |
+
psycopg2-binary
|
7 |
+
requests
|
8 |
+
gunicorn
|
saral-ai.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import re
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from openai import AzureOpenAI
|
6 |
+
import json
|
7 |
+
from nlp_parsed import parse_recruiter_query,prompt_enhancer
|
8 |
+
from SERP import query_making, serp_api_call
|
9 |
+
from apify import apify_call
|
10 |
+
from validate import validate_function, score_candidates
|
11 |
+
from postgres_db import fetch_from_saral_data, check_completeness, data_input, cur, conn, store_prompt
|
12 |
+
|
13 |
+
|
14 |
+
st.set_page_config(page_title="LinkedIn Recruiter Assistant", page_icon="🎯")
|
15 |
+
|
16 |
+
|
17 |
+
if "parsed_data" not in st.session_state:
|
18 |
+
st.session_state.parsed_data = {}
|
19 |
+
|
20 |
+
|
21 |
+
if "matched_results" not in st.session_state:
|
22 |
+
st.session_state.matched_results = []
|
23 |
+
if "unmatched_results" not in st.session_state:
|
24 |
+
st.session_state.unmatched_results = []
|
25 |
+
|
26 |
+
|
27 |
+
if "progress_placeholder" not in st.session_state:
|
28 |
+
st.session_state.progress_placeholder = None
|
29 |
+
if "progress" not in st.session_state:
|
30 |
+
st.session_state.progress = None
|
31 |
+
|
32 |
+
|
33 |
+
if "current_page" not in st.session_state:
|
34 |
+
st.session_state.current_page = 0
|
35 |
+
if "run_search" not in st.session_state:
|
36 |
+
st.session_state.run_search = False
|
37 |
+
|
38 |
+
|
39 |
+
if "user_input" not in st.session_state:
|
40 |
+
st.session_state.user_input = ""
|
41 |
+
|
42 |
+
|
43 |
+
st.header("Saral AI")
|
44 |
+
|
45 |
+
user_input = st.text_area(
|
46 |
+
"Enter your query here:",
|
47 |
+
placeholder="Enter your query here",
|
48 |
+
key="user_input_box",
|
49 |
+
value=st.session_state.user_input # always pull from session_state
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
st.session_state.user_input = user_input
|
54 |
+
|
55 |
+
|
56 |
+
# Show query parsing immediately (live preview)
|
57 |
+
if user_input.strip():
|
58 |
+
parsed_data = parse_recruiter_query(user_input)
|
59 |
+
|
60 |
+
|
61 |
+
st.session_state.parsed_data = parsed_data
|
62 |
+
|
63 |
+
if "error" in parsed_data:
|
64 |
+
st.error(parsed_data["error"])
|
65 |
+
elif parsed_data.get("is_indian") == False:
|
66 |
+
print("Our platform is not allowing search for out of india")
|
67 |
+
else:
|
68 |
+
with st.expander("Query", expanded=True):
|
69 |
+
col1, col2 = st.columns([1, 1])
|
70 |
+
with col1:
|
71 |
+
st.markdown(f'**Job Title:** {parsed_data.get("job_title", "None")}')
|
72 |
+
st.markdown(f'**Skills:** {parsed_data.get("skills", "None")}')
|
73 |
+
st.markdown(
|
74 |
+
f'**Experience:** {parsed_data.get("experience","None")} years of Experience'
|
75 |
+
)
|
76 |
+
st.markdown(f'is_indian :{parsed_data.get("is_indian","None")}')
|
77 |
+
with col2:
|
78 |
+
st.markdown(f'**Location:** {parsed_data.get("location", "None")}')
|
79 |
+
st.markdown(
|
80 |
+
f'**Work Preference:** {parsed_data.get("work_preference", "None")}'
|
81 |
+
)
|
82 |
+
st.markdown(f'**Job Type:** {parsed_data.get("job_type", "None")}')
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
# Enhance prompt button
|
87 |
+
if st.button("Enhance Prompt", use_container_width=True):
|
88 |
+
enhanced = prompt_enhancer(st.session_state.user_input)
|
89 |
+
|
90 |
+
# Store only in your own session_state variable
|
91 |
+
st.session_state.user_input = enhanced
|
92 |
+
|
93 |
+
# force rerun so text_area shows updated text
|
94 |
+
# st.experimental_rerun()
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
# Only fetch SERP + Apify when button clicked
|
99 |
+
if st.button(
|
100 |
+
"Enter",
|
101 |
+
use_container_width=True,
|
102 |
+
disabled=(parsed_data.get("is_indian") is False) # disable only if explicitly False
|
103 |
+
):
|
104 |
+
st.session_state.current_page = 0 # reset pagination
|
105 |
+
st.session_state.run_search = True
|
106 |
+
|
107 |
+
|
108 |
+
if st.session_state.run_search:
|
109 |
+
if not user_input.strip():
|
110 |
+
st.warning("Please enter a valid query.")
|
111 |
+
st.stop()
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
store_prompt(conn,user_input,parsed_data)
|
116 |
+
|
117 |
+
# Progress bar
|
118 |
+
st.session_state.progress_placeholder = st.empty()
|
119 |
+
st.session_state.progress = st.session_state.progress_placeholder.progress(0)
|
120 |
+
status = st.empty()
|
121 |
+
|
122 |
+
if user_input.strip() and "error" not in parsed_data:
|
123 |
+
query, location = query_making(parsed_data) # getting query like https:://linkedin.com --- AND location list
|
124 |
+
|
125 |
+
print(query)
|
126 |
+
|
127 |
+
|
128 |
+
### pagination concept
|
129 |
+
|
130 |
+
if st.session_state.current_page >= 0 :
|
131 |
+
results_per_page = 10
|
132 |
+
start = st.session_state.current_page * results_per_page
|
133 |
+
|
134 |
+
serp_data = serp_api_call(
|
135 |
+
query,
|
136 |
+
start= start,
|
137 |
+
results_per_page=10
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
saral_data, remain_urls = fetch_from_saral_data(serp_data, conn)
|
142 |
+
|
143 |
+
print(remain_urls)
|
144 |
+
|
145 |
+
|
146 |
+
st.session_state.progress.progress(30)
|
147 |
+
|
148 |
+
serp_json = {}
|
149 |
+
|
150 |
+
apify_json = {}
|
151 |
+
|
152 |
+
if len(remain_urls) >= 1:
|
153 |
+
for idx, i in enumerate(remain_urls,start=1):
|
154 |
+
serp_json[idx] = i
|
155 |
+
|
156 |
+
apify_json = apify_call(serp_json)
|
157 |
+
st.session_state.progress.progress(70)
|
158 |
+
|
159 |
+
|
160 |
+
if apify_json:
|
161 |
+
total_candidates = saral_data + apify_json
|
162 |
+
|
163 |
+
else:
|
164 |
+
total_candidates = saral_data
|
165 |
+
|
166 |
+
data_input(total_candidates)
|
167 |
+
|
168 |
+
# Validate funciton (location)
|
169 |
+
matched, unmatched = validate_function(location, total_candidates)
|
170 |
+
st.session_state.progress.progress(70)
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
matched = score_candidates(parsed_data , matched)
|
175 |
+
|
176 |
+
st.session_state.matched_results = matched
|
177 |
+
st.session_state.unmatched_results = unmatched
|
178 |
+
|
179 |
+
st.session_state.progress.progress(100)
|
180 |
+
st.session_state.progress_placeholder.empty()
|
181 |
+
st.session_state.progress = None
|
182 |
+
st.session_state.progress_placeholder = None
|
183 |
+
|
184 |
+
else:
|
185 |
+
st.warning("Please enter a valid query.")
|
186 |
+
|
187 |
+
|
188 |
+
if st.session_state.matched_results:
|
189 |
+
|
190 |
+
# length of Matched and unmatched profiles
|
191 |
+
col1, col2 = st.columns([1, 1])
|
192 |
+
with col1:
|
193 |
+
st.success(f"Matched Profiles: {len(st.session_state.matched_results)}")
|
194 |
+
with col2:
|
195 |
+
st.warning(f"Unmatched Profiles: {len(st.session_state.unmatched_results)}")
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
col1, col2, col3 = st.columns([1,2,1])
|
201 |
+
with col1:
|
202 |
+
if st.button("< Previous") and st.session_state.current_page > 0:
|
203 |
+
st.session_state.current_page -= 1
|
204 |
+
st.session_state.run_search = True
|
205 |
+
|
206 |
+
with col2:
|
207 |
+
st.write(f'Current Page {st.session_state.current_page + 1}')
|
208 |
+
|
209 |
+
with col3:
|
210 |
+
if st.button("Next >"):
|
211 |
+
st.session_state.current_page += 1
|
212 |
+
st.session_state.run_search = True
|
213 |
+
|
214 |
+
|
215 |
+
st.subheader("Candidates Profiles")
|
216 |
+
for idx, profiles in enumerate(st.session_state.matched_results, start=1):
|
217 |
+
with st.expander(f"{idx}. {profiles.get('fullName', 'Unknown')}"):
|
218 |
+
st.json(profiles)
|
219 |
+
|
220 |
+
with st.expander(
|
221 |
+
f"{idx}. {profiles.get('fullName', 'Unknown')} • Score: {profiles.get('score','None')} ", expanded=True
|
222 |
+
):
|
223 |
+
col1, col2 = st.columns([1, 2])
|
224 |
+
with col1:
|
225 |
+
image = profiles.get("profilePic")
|
226 |
+
|
227 |
+
temp_image = "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRDVO09x_DXK3p4Mt1j08Ab0R875TdhsDcG2A&s"
|
228 |
+
|
229 |
+
if profiles.get("profilePic"):
|
230 |
+
st.image(profiles.get("profilePic"), width=150)
|
231 |
+
else:
|
232 |
+
st.image(temp_image, width=150)
|
233 |
+
|
234 |
+
st.markdown(f"**Location:** {profiles.get('addressWithCountry','-')}")
|
235 |
+
st.markdown(f"**Email:** {profiles.get('email','None')}")
|
236 |
+
|
237 |
+
|
238 |
+
experiences = profiles.get("experiences", [])
|
239 |
+
open_to_work = True # default
|
240 |
+
|
241 |
+
for exp in experiences:
|
242 |
+
caption = exp.get("caption", "")
|
243 |
+
if "Present" in caption: # if still working
|
244 |
+
open_to_work = False
|
245 |
+
break
|
246 |
+
|
247 |
+
st.markdown(f"**Open to Work:** {'False' if not open_to_work else 'True'}")
|
248 |
+
|
249 |
+
st.markdown(
|
250 |
+
f"**LinkedIn:** [LinkedIn]({profiles.get('linkedinUrl','')})"
|
251 |
+
)
|
252 |
+
|
253 |
+
|
254 |
+
with col2:
|
255 |
+
st.markdown(f"### {profiles.get('fullName')}")
|
256 |
+
if profiles.get("headline"):
|
257 |
+
st.markdown(f"*{profiles.get('headline')}*")
|
258 |
+
|
259 |
+
skills_raw = profiles.get("skills", [])
|
260 |
+
skill_titles = [
|
261 |
+
s.get("title")
|
262 |
+
for s in skills_raw
|
263 |
+
if isinstance(s, dict) and "title" in s
|
264 |
+
]
|
265 |
+
if skill_titles:
|
266 |
+
st.markdown("**Skills:** " + " • ".join(skill_titles[:10]))
|
267 |
+
|
268 |
+
if profiles.get("about"):
|
269 |
+
about = profiles.get("about")
|
270 |
+
st.markdown(
|
271 |
+
"**About:** " + (about[:250] + "..." if len(about) > 250 else about)
|
272 |
+
)
|
273 |
+
|
274 |
+
if profiles.get("experiences"):
|
275 |
+
st.markdown("**Experience**")
|
276 |
+
for exp in profiles["experiences"]:
|
277 |
+
title = exp.get("title", "")
|
278 |
+
subtitle = exp.get("subtitle") or exp.get("metadata", "")
|
279 |
+
caption = exp.get("caption", "")
|
280 |
+
|
281 |
+
# Print main line
|
282 |
+
st.write(f"• {title} at {subtitle} — {caption}")
|
283 |
+
|
284 |
+
# Print description if available
|
285 |
+
if exp.get("description"):
|
286 |
+
for desc in exp["description"]:
|
287 |
+
if isinstance(desc, dict) and "text" in desc:
|
288 |
+
st.markdown(f" - {desc['text']}")
|
289 |
+
|
290 |
+
if profiles.get("is_complete"):
|
291 |
+
st.markdown(f'{profiles.get("is_complete")}')
|
292 |
+
|
293 |
+
if st.session_state.unmatched_results:
|
294 |
+
st.subheader("Unmatched Profiles")
|
295 |
+
for idx, profiles in enumerate(st.session_state.unmatched_results, start=1):
|
296 |
+
|
297 |
+
st.markdown(
|
298 |
+
f"{idx}, {profiles.get('fullName', 'Unknown')} - {profiles.get('addressWithCountry', 'Unknown')} [LINKEDIN]({profiles.get('linkedinUrl', 'Unknown')})"
|
299 |
+
)
|
300 |
+
|
301 |
+
|
saral_ai_api.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request, jsonify, session
|
2 |
+
import re
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import traceback
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from openai import AzureOpenAI
|
8 |
+
|
9 |
+
# Import your custom modules (make sure these are available)
|
10 |
+
try:
|
11 |
+
from nlp_parsed import parse_recruiter_query, prompt_enhancer
|
12 |
+
from SERP import query_making, serp_api_call
|
13 |
+
from apify import apify_call
|
14 |
+
from validate import validate_function, score_candidates
|
15 |
+
from postgres_db import fetch_from_saral_data, check_completeness, data_input, cur, conn, store_prompt
|
16 |
+
MODULES_AVAILABLE = True
|
17 |
+
except ImportError as e:
|
18 |
+
print(f"Warning: Some modules not available: {e}")
|
19 |
+
MODULES_AVAILABLE = False
|
20 |
+
|
21 |
+
load_dotenv()
|
22 |
+
|
23 |
+
app = Flask(__name__)
|
24 |
+
app.secret_key = os.getenv('SECRET_KEY', 'your-secret-key-here')
|
25 |
+
|
26 |
+
# Mock functions for when modules aren't available (for testing)
|
27 |
+
def mock_parse_recruiter_query(query):
|
28 |
+
return {
|
29 |
+
"job_title": "Software Engineer",
|
30 |
+
"skills": ["Python", "Flask"],
|
31 |
+
"experience": "3-5",
|
32 |
+
"location": "Mumbai",
|
33 |
+
"work_preference": "Remote",
|
34 |
+
"job_type": "Full-time",
|
35 |
+
"is_indian": True
|
36 |
+
}
|
37 |
+
|
38 |
+
def mock_prompt_enhancer(prompt):
|
39 |
+
return f"Enhanced: {prompt} - Looking for skilled professionals"
|
40 |
+
|
41 |
+
def mock_query_making(parsed_data):
|
42 |
+
return "https://linkedin.com/search", ["Mumbai", "Delhi"]
|
43 |
+
|
44 |
+
def mock_serp_api_call(query, start=0, results_per_page=10):
|
45 |
+
return [f"https://linkedin.com/in/user{i}" for i in range(start, start + results_per_page)]
|
46 |
+
|
47 |
+
def mock_fetch_from_saral_data(serp_data, conn):
|
48 |
+
return [], serp_data # Return empty saral_data, all URLs as remaining
|
49 |
+
|
50 |
+
def mock_apify_call(serp_json):
|
51 |
+
mock_profiles = []
|
52 |
+
for i in range(min(5, len(serp_json))):
|
53 |
+
mock_profiles.append({
|
54 |
+
"fullName": f"John Doe {i+1}",
|
55 |
+
"headline": "Software Engineer with 5+ years experience",
|
56 |
+
"addressWithCountry": "Mumbai, India",
|
57 |
+
"email": f"john{i+1}@example.com",
|
58 |
+
"linkedinUrl": f"https://linkedin.com/in/johndoe{i+1}",
|
59 |
+
"skills": [{"title": "Python"}, {"title": "Flask"}, {"title": "JavaScript"}],
|
60 |
+
"about": "Experienced software developer with expertise in web technologies...",
|
61 |
+
"experiences": [
|
62 |
+
{
|
63 |
+
"title": "Senior Software Engineer",
|
64 |
+
"subtitle": "Tech Company",
|
65 |
+
"caption": "Jan 2020 - Present",
|
66 |
+
"description": [{"text": "Developed web applications using Python and Flask"}]
|
67 |
+
}
|
68 |
+
],
|
69 |
+
"profilePic": "https://via.placeholder.com/150",
|
70 |
+
"is_complete": "Complete Profile"
|
71 |
+
})
|
72 |
+
return mock_profiles
|
73 |
+
|
74 |
+
def mock_validate_function(location, candidates):
|
75 |
+
# Split candidates into matched and unmatched (80% matched, 20% unmatched)
|
76 |
+
split_point = int(len(candidates) * 0.8)
|
77 |
+
return candidates[:split_point], candidates[split_point:]
|
78 |
+
|
79 |
+
def mock_score_candidates(parsed_data, candidates):
|
80 |
+
for i, candidate in enumerate(candidates):
|
81 |
+
candidate['score'] = round(85 + (i % 15), 1) # Scores between 85-100
|
82 |
+
return candidates
|
83 |
+
|
84 |
+
def mock_data_input(candidates):
|
85 |
+
pass
|
86 |
+
|
87 |
+
def mock_store_prompt(conn, prompt, parsed_data):
|
88 |
+
pass
|
89 |
+
|
90 |
+
@app.route('/')
|
91 |
+
def index():
|
92 |
+
return render_template('index.html')
|
93 |
+
|
94 |
+
@app.route('/parse_query', methods=['POST'])
|
95 |
+
def parse_query():
|
96 |
+
try:
|
97 |
+
data = request.json
|
98 |
+
user_input = data.get('query', '').strip()
|
99 |
+
|
100 |
+
if not user_input:
|
101 |
+
return jsonify({'error': 'Please enter a valid query'})
|
102 |
+
|
103 |
+
if MODULES_AVAILABLE:
|
104 |
+
parsed_data = parse_recruiter_query(user_input)
|
105 |
+
else:
|
106 |
+
parsed_data = mock_parse_recruiter_query(user_input)
|
107 |
+
|
108 |
+
return jsonify({'success': True, 'parsed_data': parsed_data})
|
109 |
+
|
110 |
+
except Exception as e:
|
111 |
+
return jsonify({'error': f'Error parsing query: {str(e)}'})
|
112 |
+
|
113 |
+
@app.route('/enhance_prompt', methods=['POST'])
|
114 |
+
def enhance_prompt():
|
115 |
+
try:
|
116 |
+
data = request.json
|
117 |
+
user_input = data.get('query', '').strip()
|
118 |
+
|
119 |
+
if not user_input:
|
120 |
+
return jsonify({'error': 'Please enter a valid query'})
|
121 |
+
|
122 |
+
if MODULES_AVAILABLE:
|
123 |
+
enhanced = prompt_enhancer(user_input)
|
124 |
+
else:
|
125 |
+
enhanced = mock_prompt_enhancer(user_input)
|
126 |
+
|
127 |
+
return jsonify({'success': True, 'enhanced_query': enhanced})
|
128 |
+
|
129 |
+
except Exception as e:
|
130 |
+
return jsonify({'error': f'Error enhancing prompt: {str(e)}'})
|
131 |
+
|
132 |
+
@app.route('/search', methods=['POST'])
|
133 |
+
def search():
|
134 |
+
try:
|
135 |
+
data = request.json
|
136 |
+
user_input = data.get('query', '').strip()
|
137 |
+
current_page = data.get('page', 0)
|
138 |
+
|
139 |
+
if not user_input:
|
140 |
+
return jsonify({'error': 'Please enter a valid query'})
|
141 |
+
|
142 |
+
# Parse query
|
143 |
+
if MODULES_AVAILABLE:
|
144 |
+
parsed_data = parse_recruiter_query(user_input)
|
145 |
+
print(parsed_data)
|
146 |
+
else:
|
147 |
+
parsed_data = mock_parse_recruiter_query(user_input)
|
148 |
+
print(parsed_data)
|
149 |
+
|
150 |
+
if "error" in parsed_data:
|
151 |
+
return jsonify({'error': parsed_data["error"]})
|
152 |
+
|
153 |
+
if parsed_data.get("is_indian") == False:
|
154 |
+
return jsonify({'error': 'Our platform is not allowing search outside of India'})
|
155 |
+
|
156 |
+
# Store prompt
|
157 |
+
if MODULES_AVAILABLE:
|
158 |
+
store_prompt(conn, user_input, parsed_data)
|
159 |
+
else:
|
160 |
+
mock_store_prompt(None, user_input, parsed_data)
|
161 |
+
|
162 |
+
# Get query and location
|
163 |
+
if MODULES_AVAILABLE:
|
164 |
+
query, location = query_making(parsed_data)
|
165 |
+
print(query)
|
166 |
+
|
167 |
+
else:
|
168 |
+
query, location = mock_query_making(parsed_data)
|
169 |
+
print(query)
|
170 |
+
|
171 |
+
|
172 |
+
# Pagination
|
173 |
+
results_per_page = 10
|
174 |
+
start = current_page * results_per_page
|
175 |
+
|
176 |
+
# Get SERP data
|
177 |
+
if MODULES_AVAILABLE:
|
178 |
+
serp_data = serp_api_call(query, start=start, results_per_page=results_per_page)
|
179 |
+
saral_data, remain_urls = fetch_from_saral_data(serp_data, conn)
|
180 |
+
else:
|
181 |
+
serp_data = mock_serp_api_call(query, start=start, results_per_page=results_per_page)
|
182 |
+
saral_data, remain_urls = mock_fetch_from_saral_data(serp_data, None)
|
183 |
+
|
184 |
+
# Process remaining URLs with Apify
|
185 |
+
apify_json = {}
|
186 |
+
if len(remain_urls) >= 1:
|
187 |
+
serp_json = {idx: url for idx, url in enumerate(remain_urls, start=1)}
|
188 |
+
|
189 |
+
if MODULES_AVAILABLE:
|
190 |
+
apify_json = apify_call(serp_json)
|
191 |
+
else:
|
192 |
+
apify_json = mock_apify_call(serp_json)
|
193 |
+
|
194 |
+
# Combine data
|
195 |
+
if apify_json:
|
196 |
+
total_candidates = saral_data + apify_json
|
197 |
+
else:
|
198 |
+
total_candidates = saral_data
|
199 |
+
|
200 |
+
# Store data
|
201 |
+
if MODULES_AVAILABLE:
|
202 |
+
data_input(total_candidates)
|
203 |
+
else:
|
204 |
+
mock_data_input(total_candidates)
|
205 |
+
|
206 |
+
# Validate and score
|
207 |
+
if MODULES_AVAILABLE:
|
208 |
+
matched, unmatched = validate_function(location, total_candidates)
|
209 |
+
matched = score_candidates(parsed_data, matched)
|
210 |
+
else:
|
211 |
+
matched, unmatched = mock_validate_function(location, total_candidates)
|
212 |
+
matched = mock_score_candidates(parsed_data, matched)
|
213 |
+
|
214 |
+
return jsonify({
|
215 |
+
'success': True,
|
216 |
+
'parsed_data': parsed_data,
|
217 |
+
'matched_results': matched,
|
218 |
+
'unmatched_results': unmatched,
|
219 |
+
'current_page': current_page
|
220 |
+
})
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
print(f"Error in search: {traceback.format_exc()}")
|
224 |
+
return jsonify({'error': f'Search error: {str(e)}'})
|
225 |
+
|
226 |
+
# if __name__ == '__main__':
|
227 |
+
# # Ensure templates directory exists
|
228 |
+
# if not os.path.exists('templates'):
|
229 |
+
# os.makedirs('templates')
|
230 |
+
|
231 |
+
# app.run(debug=True, host='0.0.0.0', port=5000)
|
templates/index.html
ADDED
@@ -0,0 +1,673 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Saral AI - LinkedIn Recruiter Assistant</title>
|
7 |
+
<link href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.3.2/css/bootstrap.min.css" rel="stylesheet">
|
8 |
+
<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css" rel="stylesheet">
|
9 |
+
<!-- <link rel="icon" type="image/x-icon" href="{{ url_for('static', filename='favicon.ico') }}"> -->
|
10 |
+
<style>
|
11 |
+
:root {
|
12 |
+
--primary-color: #0077b5;
|
13 |
+
--secondary-color: #00a0dc;
|
14 |
+
--success-color: #28a745;
|
15 |
+
--warning-color: #ffc107;
|
16 |
+
--error-color: #dc3545;
|
17 |
+
--dark-color: #2c3e50;
|
18 |
+
--light-bg: #f8f9fa;
|
19 |
+
}
|
20 |
+
|
21 |
+
body {
|
22 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
23 |
+
min-height: 100vh;
|
24 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
25 |
+
}
|
26 |
+
|
27 |
+
.main-container {
|
28 |
+
background: white;
|
29 |
+
margin: 20px auto;
|
30 |
+
border-radius: 20px;
|
31 |
+
box-shadow: 0 15px 35px rgba(0,0,0,0.1);
|
32 |
+
overflow: hidden;
|
33 |
+
}
|
34 |
+
|
35 |
+
.header {
|
36 |
+
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
|
37 |
+
color: white;
|
38 |
+
padding: 30px;
|
39 |
+
text-align: center;
|
40 |
+
}
|
41 |
+
|
42 |
+
.header h1 {
|
43 |
+
margin: 0;
|
44 |
+
font-size: 2.5rem;
|
45 |
+
font-weight: bold;
|
46 |
+
}
|
47 |
+
|
48 |
+
.content-area {
|
49 |
+
padding: 40px;
|
50 |
+
}
|
51 |
+
|
52 |
+
.query-input {
|
53 |
+
border: 2px solid #e9ecef;
|
54 |
+
border-radius: 10px;
|
55 |
+
padding: 15px;
|
56 |
+
font-size: 16px;
|
57 |
+
transition: all 0.3s ease;
|
58 |
+
min-height: 120px;
|
59 |
+
resize: vertical;
|
60 |
+
}
|
61 |
+
|
62 |
+
.query-input:focus {
|
63 |
+
border-color: var(--primary-color);
|
64 |
+
box-shadow: 0 0 0 0.2rem rgba(0,119,181,0.25);
|
65 |
+
}
|
66 |
+
|
67 |
+
.btn-custom {
|
68 |
+
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
|
69 |
+
border: none;
|
70 |
+
padding: 12px 30px;
|
71 |
+
border-radius: 25px;
|
72 |
+
color: white;
|
73 |
+
font-weight: 600;
|
74 |
+
transition: all 0.3s ease;
|
75 |
+
margin: 5px;
|
76 |
+
}
|
77 |
+
|
78 |
+
.btn-custom:hover {
|
79 |
+
transform: translateY(-2px);
|
80 |
+
box-shadow: 0 5px 15px rgba(0,119,181,0.4);
|
81 |
+
color: white;
|
82 |
+
}
|
83 |
+
|
84 |
+
.btn-secondary-custom {
|
85 |
+
background: linear-gradient(135deg, #6c757d, #495057);
|
86 |
+
border: none;
|
87 |
+
padding: 10px 25px;
|
88 |
+
border-radius: 20px;
|
89 |
+
color: white;
|
90 |
+
font-weight: 500;
|
91 |
+
transition: all 0.3s ease;
|
92 |
+
margin: 5px;
|
93 |
+
}
|
94 |
+
|
95 |
+
.btn-secondary-custom:hover {
|
96 |
+
transform: translateY(-2px);
|
97 |
+
box-shadow: 0 5px 15px rgba(108,117,125,0.4);
|
98 |
+
color: white;
|
99 |
+
}
|
100 |
+
|
101 |
+
.query-display {
|
102 |
+
background: var(--light-bg);
|
103 |
+
border-radius: 15px;
|
104 |
+
padding: 25px;
|
105 |
+
margin: 20px 0;
|
106 |
+
border-left: 5px solid var(--primary-color);
|
107 |
+
}
|
108 |
+
|
109 |
+
.profile-card {
|
110 |
+
background: white;
|
111 |
+
border-radius: 15px;
|
112 |
+
padding: 25px;
|
113 |
+
margin: 15px 0;
|
114 |
+
box-shadow: 0 5px 15px rgba(0,0,0,0.08);
|
115 |
+
border: 1px solid #e9ecef;
|
116 |
+
transition: all 0.3s ease;
|
117 |
+
}
|
118 |
+
|
119 |
+
.profile-card:hover {
|
120 |
+
transform: translateY(-5px);
|
121 |
+
box-shadow: 0 10px 25px rgba(0,0,0,0.15);
|
122 |
+
}
|
123 |
+
|
124 |
+
.profile-image {
|
125 |
+
width: 120px;
|
126 |
+
height: 120px;
|
127 |
+
border-radius: 50%;
|
128 |
+
object-fit: cover;
|
129 |
+
border: 4px solid var(--primary-color);
|
130 |
+
}
|
131 |
+
|
132 |
+
.skills-tag {
|
133 |
+
display: inline-block;
|
134 |
+
background: var(--primary-color);
|
135 |
+
color: white;
|
136 |
+
padding: 5px 12px;
|
137 |
+
margin: 3px;
|
138 |
+
border-radius: 15px;
|
139 |
+
font-size: 12px;
|
140 |
+
font-weight: 500;
|
141 |
+
}
|
142 |
+
|
143 |
+
.experience-item {
|
144 |
+
background: #f8f9fa;
|
145 |
+
padding: 15px;
|
146 |
+
margin: 10px 0;
|
147 |
+
border-radius: 10px;
|
148 |
+
border-left: 4px solid var(--secondary-color);
|
149 |
+
}
|
150 |
+
|
151 |
+
.score-badge {
|
152 |
+
background: linear-gradient(135deg, var(--success-color), #20c997);
|
153 |
+
color: white;
|
154 |
+
padding: 8px 16px;
|
155 |
+
border-radius: 20px;
|
156 |
+
font-weight: bold;
|
157 |
+
font-size: 14px;
|
158 |
+
}
|
159 |
+
|
160 |
+
.loading-spinner {
|
161 |
+
display: none;
|
162 |
+
text-align: center;
|
163 |
+
padding: 20px;
|
164 |
+
}
|
165 |
+
|
166 |
+
.stats-card {
|
167 |
+
background: linear-gradient(135deg, #28a745, #20c997);
|
168 |
+
color: white;
|
169 |
+
padding: 20px;
|
170 |
+
border-radius: 15px;
|
171 |
+
text-align: center;
|
172 |
+
margin: 10px 0;
|
173 |
+
}
|
174 |
+
|
175 |
+
.pagination-controls {
|
176 |
+
display: flex;
|
177 |
+
justify-content: center;
|
178 |
+
align-items: center;
|
179 |
+
margin: 30px 0;
|
180 |
+
gap: 15px;
|
181 |
+
}
|
182 |
+
|
183 |
+
.error-message {
|
184 |
+
background: #f8d7da;
|
185 |
+
border: 1px solid #f5c6cb;
|
186 |
+
color: #721c24;
|
187 |
+
padding: 15px;
|
188 |
+
border-radius: 10px;
|
189 |
+
margin: 20px 0;
|
190 |
+
}
|
191 |
+
|
192 |
+
.success-message {
|
193 |
+
background: #d4edda;
|
194 |
+
border: 1px solid #c3e6cb;
|
195 |
+
color: #155724;
|
196 |
+
padding: 15px;
|
197 |
+
border-radius: 10px;
|
198 |
+
margin: 20px 0;
|
199 |
+
}
|
200 |
+
|
201 |
+
.unmatched-list {
|
202 |
+
background: #fff3cd;
|
203 |
+
border: 1px solid #ffeaa7;
|
204 |
+
padding: 20px;
|
205 |
+
border-radius: 15px;
|
206 |
+
margin-top: 30px;
|
207 |
+
}
|
208 |
+
|
209 |
+
.progress-bar-custom {
|
210 |
+
background: linear-gradient(90deg, var(--primary-color), var(--secondary-color));
|
211 |
+
height: 20px;
|
212 |
+
border-radius: 10px;
|
213 |
+
transition: width 0.3s ease;
|
214 |
+
}
|
215 |
+
|
216 |
+
@media (max-width: 768px) {
|
217 |
+
.content-area {
|
218 |
+
padding: 20px;
|
219 |
+
}
|
220 |
+
.header h1 {
|
221 |
+
font-size: 2rem;
|
222 |
+
}
|
223 |
+
.profile-card {
|
224 |
+
padding: 15px;
|
225 |
+
}
|
226 |
+
}
|
227 |
+
</style>
|
228 |
+
</head>
|
229 |
+
<body>
|
230 |
+
<div class="container-fluid">
|
231 |
+
<div class="main-container">
|
232 |
+
<div class="header">
|
233 |
+
<h1><i class="fas fa-search"></i> Saral AI</h1>
|
234 |
+
<p class="mb-0">LinkedIn Recruiter Assistant</p>
|
235 |
+
</div>
|
236 |
+
|
237 |
+
<div class="content-area">
|
238 |
+
<div class="row">
|
239 |
+
<div class="col-12">
|
240 |
+
<div class="mb-4">
|
241 |
+
<label for="queryInput" class="form-label h5">Enter your recruitment query:</label>
|
242 |
+
<textarea
|
243 |
+
id="queryInput"
|
244 |
+
class="form-control query-input"
|
245 |
+
placeholder="e.g., Looking for Python developers with 3-5 years experience in Mumbai..."
|
246 |
+
rows="4"></textarea>
|
247 |
+
</div>
|
248 |
+
|
249 |
+
<div class="text-center mb-4">
|
250 |
+
<button class="btn btn-secondary-custom" onclick="enhancePrompt()">
|
251 |
+
<i class="fas fa-magic"></i> Enhance Prompt
|
252 |
+
</button>
|
253 |
+
<button class="btn btn-custom" onclick="searchCandidates()" id="searchBtn">
|
254 |
+
<i class="fas fa-play"></i> Enter
|
255 |
+
</button>
|
256 |
+
</div>
|
257 |
+
|
258 |
+
<div class="loading-spinner" id="loadingSpinner">
|
259 |
+
<div class="spinner-border text-primary" role="status">
|
260 |
+
<span class="visually-hidden">Loading...</span>
|
261 |
+
</div>
|
262 |
+
<p class="mt-2">Searching for candidates...</p>
|
263 |
+
<div class="progress mt-3" style="height: 20px;">
|
264 |
+
<div class="progress-bar progress-bar-custom" id="progressBar"
|
265 |
+
role="progressbar" style="width: 0%"></div>
|
266 |
+
</div>
|
267 |
+
</div>
|
268 |
+
|
269 |
+
<div id="errorMessage" class="error-message" style="display: none;"></div>
|
270 |
+
<div id="successMessage" class="success-message" style="display: none;"></div>
|
271 |
+
|
272 |
+
<div id="queryDisplay" class="query-display" style="display: none;">
|
273 |
+
<h5><i class="fas fa-info-circle"></i> Parsed Query Information</h5>
|
274 |
+
<div class="row" id="queryDetails"></div>
|
275 |
+
</div>
|
276 |
+
|
277 |
+
<div id="resultsStats" style="display: none;">
|
278 |
+
<div class="row">
|
279 |
+
<div class="col-md-6">
|
280 |
+
<div class="stats-card">
|
281 |
+
<h3 id="matchedCount">0</h3>
|
282 |
+
<p class="mb-0">Matched Profiles</p>
|
283 |
+
</div>
|
284 |
+
</div>
|
285 |
+
<div class="col-md-6">
|
286 |
+
<div class="stats-card" style="background: linear-gradient(135deg, #ffc107, #fd7e14);">
|
287 |
+
<h3 id="unmatchedCount">0</h3>
|
288 |
+
<p class="mb-0">Unmatched Profiles</p>
|
289 |
+
</div>
|
290 |
+
</div>
|
291 |
+
</div>
|
292 |
+
</div>
|
293 |
+
|
294 |
+
<div class="pagination-controls" id="paginationControls" style="display: none;">
|
295 |
+
<button class="btn btn-secondary-custom" onclick="previousPage()" id="prevBtn">
|
296 |
+
<i class="fas fa-chevron-left"></i> Previous
|
297 |
+
</button>
|
298 |
+
<span id="pageInfo" class="mx-3 fw-bold">Page 1</span>
|
299 |
+
<button class="btn btn-secondary-custom" onclick="nextPage()" id="nextBtn">
|
300 |
+
Next <i class="fas fa-chevron-right"></i>
|
301 |
+
</button>
|
302 |
+
</div>
|
303 |
+
|
304 |
+
<div id="candidateResults"></div>
|
305 |
+
|
306 |
+
<div id="unmatchedResults" class="unmatched-list" style="display: none;">
|
307 |
+
<h5><i class="fas fa-exclamation-triangle"></i> Unmatched Profiles</h5>
|
308 |
+
<div id="unmatchedList"></div>
|
309 |
+
</div>
|
310 |
+
</div>
|
311 |
+
</div>
|
312 |
+
</div>
|
313 |
+
</div>
|
314 |
+
</div>
|
315 |
+
|
316 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.3.2/js/bootstrap.bundle.min.js"></script>
|
317 |
+
<script>
|
318 |
+
let currentPage = 0;
|
319 |
+
let currentQuery = '';
|
320 |
+
let currentResults = {
|
321 |
+
matched: [],
|
322 |
+
unmatched: [],
|
323 |
+
parsed_data: {}
|
324 |
+
};
|
325 |
+
|
326 |
+
function showError(message) {
|
327 |
+
const errorDiv = document.getElementById('errorMessage');
|
328 |
+
errorDiv.innerHTML = `<i class="fas fa-exclamation-triangle"></i> ${message}`;
|
329 |
+
errorDiv.style.display = 'block';
|
330 |
+
document.getElementById('successMessage').style.display = 'none';
|
331 |
+
}
|
332 |
+
|
333 |
+
function showSuccess(message) {
|
334 |
+
const successDiv = document.getElementById('successMessage');
|
335 |
+
successDiv.innerHTML = `<i class="fas fa-check-circle"></i> ${message}`;
|
336 |
+
successDiv.style.display = 'block';
|
337 |
+
document.getElementById('errorMessage').style.display = 'none';
|
338 |
+
}
|
339 |
+
|
340 |
+
function hideMessages() {
|
341 |
+
document.getElementById('errorMessage').style.display = 'none';
|
342 |
+
document.getElementById('successMessage').style.display = 'none';
|
343 |
+
}
|
344 |
+
|
345 |
+
function showLoading() {
|
346 |
+
document.getElementById('loadingSpinner').style.display = 'block';
|
347 |
+
document.getElementById('searchBtn').disabled = true;
|
348 |
+
}
|
349 |
+
|
350 |
+
function hideLoading() {
|
351 |
+
document.getElementById('loadingSpinner').style.display = 'none';
|
352 |
+
document.getElementById('searchBtn').disabled = false;
|
353 |
+
}
|
354 |
+
|
355 |
+
function updateProgress(percentage) {
|
356 |
+
document.getElementById('progressBar').style.width = percentage + '%';
|
357 |
+
}
|
358 |
+
|
359 |
+
async function enhancePrompt() {
|
360 |
+
const query = document.getElementById('queryInput').value.trim();
|
361 |
+
if (!query) {
|
362 |
+
showError('Please enter a query first');
|
363 |
+
return;
|
364 |
+
}
|
365 |
+
|
366 |
+
try {
|
367 |
+
const response = await fetch('/enhance_prompt', {
|
368 |
+
method: 'POST',
|
369 |
+
headers: {
|
370 |
+
'Content-Type': 'application/json'
|
371 |
+
},
|
372 |
+
body: JSON.stringify({ query })
|
373 |
+
});
|
374 |
+
|
375 |
+
const data = await response.json();
|
376 |
+
if (data.success) {
|
377 |
+
document.getElementById('queryInput').value = data.enhanced_query;
|
378 |
+
showSuccess('Prompt enhanced successfully!');
|
379 |
+
} else {
|
380 |
+
showError(data.error || 'Failed to enhance prompt');
|
381 |
+
}
|
382 |
+
} catch (error) {
|
383 |
+
showError('Error enhancing prompt: ' + error.message);
|
384 |
+
}
|
385 |
+
}
|
386 |
+
|
387 |
+
function displayParsedQuery(parsedData) {
|
388 |
+
const queryDetails = document.getElementById('queryDetails');
|
389 |
+
queryDetails.innerHTML = `
|
390 |
+
<div class="col-md-6">
|
391 |
+
<p><strong>Job Title:</strong> ${parsedData.job_title || 'None'}</p>
|
392 |
+
<p><strong>Skills:</strong> ${Array.isArray(parsedData.skills) ? parsedData.skills.join(', ') : parsedData.skills || 'None'}</p>
|
393 |
+
<p><strong>Experience:</strong> ${parsedData.experience || 'None'} years</p>
|
394 |
+
<p><strong>Indian Candidate:</strong> ${parsedData.is_indian ? 'Yes' : 'No'}</p>
|
395 |
+
</div>
|
396 |
+
<div class="col-md-6">
|
397 |
+
<p><strong>Location:</strong> ${parsedData.location || 'None'}</p>
|
398 |
+
<p><strong>Work Preference:</strong> ${parsedData.work_preference || 'None'}</p>
|
399 |
+
<p><strong>Job Type:</strong> ${parsedData.job_type || 'None'}</p>
|
400 |
+
</div>
|
401 |
+
`;
|
402 |
+
document.getElementById('queryDisplay').style.display = 'block';
|
403 |
+
}
|
404 |
+
|
405 |
+
async function searchCandidates() {
|
406 |
+
const query = document.getElementById('queryInput').value.trim();
|
407 |
+
if (!query) {
|
408 |
+
showError('Please enter a query first');
|
409 |
+
return;
|
410 |
+
}
|
411 |
+
|
412 |
+
currentQuery = query;
|
413 |
+
currentPage = 0; // Reset to first page
|
414 |
+
showLoading();
|
415 |
+
hideMessages();
|
416 |
+
updateProgress(0);
|
417 |
+
|
418 |
+
try {
|
419 |
+
// First parse the query
|
420 |
+
updateProgress(10);
|
421 |
+
const parseResponse = await fetch('/parse_query', {
|
422 |
+
method: 'POST',
|
423 |
+
headers: {
|
424 |
+
'Content-Type': 'application/json'
|
425 |
+
},
|
426 |
+
body: JSON.stringify({ query })
|
427 |
+
});
|
428 |
+
|
429 |
+
const parseData = await parseResponse.json();
|
430 |
+
if (!parseData.success) {
|
431 |
+
throw new Error(parseData.error || 'Failed to parse query');
|
432 |
+
}
|
433 |
+
|
434 |
+
// Check if query is for Indian candidates
|
435 |
+
if (parseData.parsed_data.is_indian === false) {
|
436 |
+
throw new Error('Our platform only supports searches for candidates in India');
|
437 |
+
}
|
438 |
+
|
439 |
+
displayParsedQuery(parseData.parsed_data);
|
440 |
+
updateProgress(30);
|
441 |
+
|
442 |
+
// Now search for candidates
|
443 |
+
const response = await fetch('/search', {
|
444 |
+
method: 'POST',
|
445 |
+
headers: {
|
446 |
+
'Content-Type': 'application/json'
|
447 |
+
},
|
448 |
+
body: JSON.stringify({
|
449 |
+
query: query,
|
450 |
+
parsed_data: parseData.parsed_data,
|
451 |
+
page: currentPage
|
452 |
+
})
|
453 |
+
});
|
454 |
+
|
455 |
+
updateProgress(70);
|
456 |
+
|
457 |
+
const data = await response.json();
|
458 |
+
if (data.success) {
|
459 |
+
currentResults = data;
|
460 |
+
displayResults(data);
|
461 |
+
updateProgress(100);
|
462 |
+
showSuccess(`Search completed! Found ${data.matched_results.length} matched profiles.`);
|
463 |
+
} else {
|
464 |
+
throw new Error(data.error || 'Search failed');
|
465 |
+
}
|
466 |
+
} catch (error) {
|
467 |
+
showError('Error during search: ' + error.message);
|
468 |
+
} finally {
|
469 |
+
hideLoading();
|
470 |
+
}
|
471 |
+
}
|
472 |
+
|
473 |
+
function displayResults(data) {
|
474 |
+
// Display stats
|
475 |
+
document.getElementById('matchedCount').textContent = data.matched_results.length;
|
476 |
+
document.getElementById('unmatchedCount').textContent = data.unmatched_results.length;
|
477 |
+
document.getElementById('resultsStats').style.display = 'block';
|
478 |
+
|
479 |
+
// Display pagination
|
480 |
+
updatePagination();
|
481 |
+
|
482 |
+
// Display matched results
|
483 |
+
displayCandidates(data.matched_results);
|
484 |
+
|
485 |
+
// Display unmatched results
|
486 |
+
displayUnmatchedCandidates(data.unmatched_results);
|
487 |
+
}
|
488 |
+
|
489 |
+
function updatePagination() {
|
490 |
+
document.getElementById('pageInfo').textContent = `Page ${currentPage + 1}`;
|
491 |
+
document.getElementById('paginationControls').style.display = 'flex';
|
492 |
+
document.getElementById('prevBtn').disabled = currentPage === 0;
|
493 |
+
}
|
494 |
+
|
495 |
+
function displayCandidates(candidates) {
|
496 |
+
const resultsDiv = document.getElementById('candidateResults');
|
497 |
+
if (!candidates || candidates.length === 0) {
|
498 |
+
resultsDiv.innerHTML = '<div class="text-center"><h5>No matched candidates found</h5></div>';
|
499 |
+
return;
|
500 |
+
}
|
501 |
+
|
502 |
+
let html = '<h4><i class="fas fa-users"></i> Candidate Profiles</h4>';
|
503 |
+
|
504 |
+
candidates.forEach((candidate, index) => {
|
505 |
+
const skills = Array.isArray(candidate.skills)
|
506 |
+
? candidate.skills.map(s => typeof s === 'object' ? s.title : s).slice(0, 10)
|
507 |
+
: [];
|
508 |
+
|
509 |
+
const experiences = candidate.experiences || [];
|
510 |
+
const isOpenToWork = !experiences.some(exp =>
|
511 |
+
exp.caption && exp.caption.includes('Present')
|
512 |
+
);
|
513 |
+
|
514 |
+
const defaultImage = "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRDVO09x_DXK3p4Mt1j08Ab0R875TdhsDcG2A&s";
|
515 |
+
|
516 |
+
html += `
|
517 |
+
<div class="profile-card">
|
518 |
+
<div class="row">
|
519 |
+
<div class="col-md-3 text-center">
|
520 |
+
<img src="${candidate.profilePic || defaultImage}"
|
521 |
+
alt="Profile" class="profile-image mb-3">
|
522 |
+
<div class="score-badge mb-2">
|
523 |
+
Score: ${candidate.score || 'N/A'}
|
524 |
+
</div>
|
525 |
+
<p><strong>Location:</strong><br>${candidate.addressWithCountry || 'N/A'}</p>
|
526 |
+
<p><strong>Email:</strong><br>${candidate.email || 'None'}</p>
|
527 |
+
<p><strong>Open to Work:</strong><br>${isOpenToWork ? 'True' : 'False'}</p>
|
528 |
+
${candidate.linkedinUrl ? `
|
529 |
+
<a href="${candidate.linkedinUrl}" target="_blank" class="btn btn-custom btn-sm">
|
530 |
+
<i class="fab fa-linkedin"></i> LinkedIn
|
531 |
+
</a>
|
532 |
+
` : ''}
|
533 |
+
</div>
|
534 |
+
<div class="col-md-9">
|
535 |
+
<h4>${candidate.fullName || 'Unknown'}</h4>
|
536 |
+
${candidate.headline ? `<p class="text-muted fst-italic">${candidate.headline}</p>` : ''}
|
537 |
+
|
538 |
+
${skills.length > 0 ? `
|
539 |
+
<div class="mb-3">
|
540 |
+
<strong>Skills:</strong><br>
|
541 |
+
${skills.map(skill => `<span class="skills-tag">${skill}</span>`).join('')}
|
542 |
+
</div>
|
543 |
+
` : ''}
|
544 |
+
|
545 |
+
${candidate.about ? `
|
546 |
+
<div class="mb-3">
|
547 |
+
<strong>About:</strong>
|
548 |
+
<p>${candidate.about.length > 250 ? candidate.about.substring(0, 250) + '...' : candidate.about}</p>
|
549 |
+
</div>
|
550 |
+
` : ''}
|
551 |
+
|
552 |
+
${experiences.length > 0 ? `
|
553 |
+
<div class="mb-3">
|
554 |
+
<strong>Experience:</strong>
|
555 |
+
${experiences.map(exp => `
|
556 |
+
<div class="experience-item">
|
557 |
+
<strong>${exp.title || ''}</strong> at <strong>${exp.subtitle || exp.metadata || ''}</strong>
|
558 |
+
<small class="text-muted d-block">${exp.caption || ''}</small>
|
559 |
+
${exp.description && exp.description.length > 0 ? `
|
560 |
+
<ul class="mt-2">
|
561 |
+
${exp.description.map(desc =>
|
562 |
+
typeof desc === 'object' && desc.text ?
|
563 |
+
`<li>${desc.text}</li>` : ''
|
564 |
+
).join('')}
|
565 |
+
</ul>
|
566 |
+
` : ''}
|
567 |
+
</div>
|
568 |
+
`).join('')}
|
569 |
+
</div>
|
570 |
+
` : ''}
|
571 |
+
|
572 |
+
${candidate.is_complete ? `
|
573 |
+
<div class="text-success">
|
574 |
+
<i class="fas fa-check-circle"></i> ${candidate.is_complete}
|
575 |
+
</div>
|
576 |
+
` : ''}
|
577 |
+
</div>
|
578 |
+
</div>
|
579 |
+
</div>
|
580 |
+
`;
|
581 |
+
});
|
582 |
+
|
583 |
+
resultsDiv.innerHTML = html;
|
584 |
+
}
|
585 |
+
|
586 |
+
function displayUnmatchedCandidates(unmatchedCandidates) {
|
587 |
+
const unmatchedDiv = document.getElementById('unmatchedResults');
|
588 |
+
const unmatchedList = document.getElementById('unmatchedList');
|
589 |
+
|
590 |
+
if (!unmatchedCandidates || unmatchedCandidates.length === 0) {
|
591 |
+
unmatchedDiv.style.display = 'none';
|
592 |
+
return;
|
593 |
+
}
|
594 |
+
|
595 |
+
let html = '';
|
596 |
+
unmatchedCandidates.forEach((candidate, index) => {
|
597 |
+
html += `
|
598 |
+
<p>${index + 1}. ${candidate.fullName || 'Unknown'} -
|
599 |
+
${candidate.addressWithCountry || 'Unknown'}
|
600 |
+
${candidate.linkedinUrl ? `<a href="${candidate.linkedinUrl}" target="_blank">LINKEDIN</a>` : ''}</p>
|
601 |
+
`;
|
602 |
+
});
|
603 |
+
|
604 |
+
unmatchedList.innerHTML = html;
|
605 |
+
unmatchedDiv.style.display = 'block';
|
606 |
+
}
|
607 |
+
|
608 |
+
async function nextPage() {
|
609 |
+
currentPage++;
|
610 |
+
await searchPage();
|
611 |
+
}
|
612 |
+
|
613 |
+
async function previousPage() {
|
614 |
+
if (currentPage > 0) {
|
615 |
+
currentPage--;
|
616 |
+
await searchPage();
|
617 |
+
}
|
618 |
+
}
|
619 |
+
|
620 |
+
async function searchPage() {
|
621 |
+
if (!currentQuery) return;
|
622 |
+
|
623 |
+
showLoading();
|
624 |
+
hideMessages();
|
625 |
+
updateProgress(0);
|
626 |
+
|
627 |
+
try {
|
628 |
+
updateProgress(30);
|
629 |
+
const response = await fetch('/search', {
|
630 |
+
method: 'POST',
|
631 |
+
headers: {
|
632 |
+
'Content-Type': 'application/json'
|
633 |
+
},
|
634 |
+
body: JSON.stringify({
|
635 |
+
query: currentQuery,
|
636 |
+
page: currentPage
|
637 |
+
})
|
638 |
+
});
|
639 |
+
|
640 |
+
updateProgress(70);
|
641 |
+
|
642 |
+
const data = await response.json();
|
643 |
+
if (data.success) {
|
644 |
+
currentResults = data;
|
645 |
+
displayResults(data);
|
646 |
+
updateProgress(100);
|
647 |
+
showSuccess(`Page ${currentPage + 1} loaded successfully!`);
|
648 |
+
} else {
|
649 |
+
throw new Error(data.error || 'Failed to load page');
|
650 |
+
}
|
651 |
+
} catch (error) {
|
652 |
+
showError('Error loading page: ' + error.message);
|
653 |
+
// Revert page on error
|
654 |
+
currentPage = Math.max(0, currentPage - (event.target.textContent.includes('Next') ? 1 : -1));
|
655 |
+
} finally {
|
656 |
+
hideLoading();
|
657 |
+
}
|
658 |
+
}
|
659 |
+
|
660 |
+
// Auto-parse query as user types (optional feature)
|
661 |
+
let parseTimeout;
|
662 |
+
document.getElementById('queryInput').addEventListener('input', function() {
|
663 |
+
clearTimeout(parseTimeout);
|
664 |
+
parseTimeout = setTimeout(() => {
|
665 |
+
const query = this.value.trim();
|
666 |
+
if (query && query.length > 10) {
|
667 |
+
// You can add auto-parsing here if desired
|
668 |
+
}
|
669 |
+
}, 500);
|
670 |
+
});
|
671 |
+
</script>
|
672 |
+
</body>
|
673 |
+
</html>
|
validate.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def validate_function(location,apify_json):
|
2 |
+
locations = [loc.lower().strip() for loc in location] if location else []
|
3 |
+
|
4 |
+
if not locations:
|
5 |
+
locations = ["india"]
|
6 |
+
|
7 |
+
|
8 |
+
match_list = []
|
9 |
+
unmatched_list = []
|
10 |
+
|
11 |
+
for profile in apify_json:
|
12 |
+
address = profile.get("addressWithCountry", "")
|
13 |
+
|
14 |
+
if not address:
|
15 |
+
unmatched_list.append(profile) # no address → unmatched
|
16 |
+
continue
|
17 |
+
|
18 |
+
address_lower = [part.strip().lower() for part in address.split(",")]
|
19 |
+
|
20 |
+
|
21 |
+
if "india" in address_lower or any("india" in part for part in address_lower):
|
22 |
+
if any(loc in address_lower for loc in locations):
|
23 |
+
match_list.append(profile)
|
24 |
+
else:
|
25 |
+
unmatched_list.append(profile)
|
26 |
+
else:
|
27 |
+
unmatched_list.append(profile)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
return match_list , unmatched_list
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
def score_candidates(parsed_data, matched_list):
|
36 |
+
job_title = parsed_data.get("job_title", "").lower()
|
37 |
+
job_keywords = job_title.split() if job_title else []
|
38 |
+
|
39 |
+
required_skills = [s.lower() for s in parsed_data.get("skills", [])]
|
40 |
+
|
41 |
+
for profile in matched_list:
|
42 |
+
score = 0
|
43 |
+
breakdown = {}
|
44 |
+
|
45 |
+
# Headline check (count occurrences of each keyword)
|
46 |
+
headline = (profile.get("headline") or "").lower()
|
47 |
+
headline_score = 0
|
48 |
+
for kw in job_keywords:
|
49 |
+
count = headline.count(kw)
|
50 |
+
headline_score += count * 15 # each occurrence worth 15
|
51 |
+
score += headline_score
|
52 |
+
breakdown["headline_match"] = headline_score
|
53 |
+
|
54 |
+
# About check (count occurrences of each keyword)
|
55 |
+
about = (profile.get("about") or "").lower()
|
56 |
+
about_score = 0
|
57 |
+
for kw in job_keywords:
|
58 |
+
count = about.count(kw)
|
59 |
+
about_score += count * 10 # each occurrence worth 10
|
60 |
+
score += about_score
|
61 |
+
breakdown["about_match"] = about_score
|
62 |
+
|
63 |
+
# Skills check (exact match count)
|
64 |
+
profile_skills = [
|
65 |
+
s.get("title", "").lower()
|
66 |
+
for s in profile.get("skills", [])
|
67 |
+
if isinstance(s, dict)
|
68 |
+
]
|
69 |
+
skill_score = 0
|
70 |
+
for req_skill in required_skills:
|
71 |
+
skill_score += profile_skills.count(req_skill) * 10 # per match worth 10
|
72 |
+
score += skill_score
|
73 |
+
breakdown["skills_match"] = skill_score
|
74 |
+
|
75 |
+
# Cap score at 100
|
76 |
+
profile["score"] = min(round(score), 100)
|
77 |
+
profile["score_breakdown"] = breakdown
|
78 |
+
|
79 |
+
# Sort list in-place by score (highest first)
|
80 |
+
matched_list.sort(key=lambda x: x.get("score", 0), reverse=True)
|
81 |
+
|
82 |
+
return matched_list
|
83 |
+
|