Spaces:
Running
on
Zero
Running
on
Zero
| import numpy as np | |
| import cv2 | |
| import torch | |
| # Dictionary utils | |
| def _dict_merge(dicta, dictb, prefix=''): | |
| """ | |
| Merge two dictionaries. | |
| """ | |
| assert isinstance(dicta, dict), 'input must be a dictionary' | |
| assert isinstance(dictb, dict), 'input must be a dictionary' | |
| dict_ = {} | |
| all_keys = set(dicta.keys()).union(set(dictb.keys())) | |
| for key in all_keys: | |
| if key in dicta.keys() and key in dictb.keys(): | |
| if isinstance(dicta[key], dict) and isinstance(dictb[key], dict): | |
| dict_[key] = _dict_merge(dicta[key], dictb[key], prefix=f'{prefix}.{key}') | |
| else: | |
| raise ValueError(f'Duplicate key {prefix}.{key} found in both dictionaries. Types: {type(dicta[key])}, {type(dictb[key])}') | |
| elif key in dicta.keys(): | |
| dict_[key] = dicta[key] | |
| else: | |
| dict_[key] = dictb[key] | |
| return dict_ | |
| def dict_merge(dicta, dictb): | |
| """ | |
| Merge two dictionaries. | |
| """ | |
| return _dict_merge(dicta, dictb, prefix='') | |
| def dict_foreach(dic, func, special_func={}): | |
| """ | |
| Recursively apply a function to all non-dictionary leaf values in a dictionary. | |
| """ | |
| assert isinstance(dic, dict), 'input must be a dictionary' | |
| for key in dic.keys(): | |
| if isinstance(dic[key], dict): | |
| dic[key] = dict_foreach(dic[key], func) | |
| else: | |
| if key in special_func.keys(): | |
| dic[key] = special_func[key](dic[key]) | |
| else: | |
| dic[key] = func(dic[key]) | |
| return dic | |
| def dict_reduce(dicts, func, special_func={}): | |
| """ | |
| Reduce a list of dictionaries. Leaf values must be scalars. | |
| """ | |
| assert isinstance(dicts, list), 'input must be a list of dictionaries' | |
| assert all([isinstance(d, dict) for d in dicts]), 'input must be a list of dictionaries' | |
| assert len(dicts) > 0, 'input must be a non-empty list of dictionaries' | |
| all_keys = set([key for dict_ in dicts for key in dict_.keys()]) | |
| reduced_dict = {} | |
| for key in all_keys: | |
| vlist = [dict_[key] for dict_ in dicts if key in dict_.keys()] | |
| if isinstance(vlist[0], dict): | |
| reduced_dict[key] = dict_reduce(vlist, func, special_func) | |
| else: | |
| if key in special_func.keys(): | |
| reduced_dict[key] = special_func[key](vlist) | |
| else: | |
| reduced_dict[key] = func(vlist) | |
| return reduced_dict | |
| def dict_any(dic, func): | |
| """ | |
| Recursively apply a function to all non-dictionary leaf values in a dictionary. | |
| """ | |
| assert isinstance(dic, dict), 'input must be a dictionary' | |
| for key in dic.keys(): | |
| if isinstance(dic[key], dict): | |
| if dict_any(dic[key], func): | |
| return True | |
| else: | |
| if func(dic[key]): | |
| return True | |
| return False | |
| def dict_all(dic, func): | |
| """ | |
| Recursively apply a function to all non-dictionary leaf values in a dictionary. | |
| """ | |
| assert isinstance(dic, dict), 'input must be a dictionary' | |
| for key in dic.keys(): | |
| if isinstance(dic[key], dict): | |
| if not dict_all(dic[key], func): | |
| return False | |
| else: | |
| if not func(dic[key]): | |
| return False | |
| return True | |
| def dict_flatten(dic, sep='.'): | |
| """ | |
| Flatten a nested dictionary into a dictionary with no nested dictionaries. | |
| """ | |
| assert isinstance(dic, dict), 'input must be a dictionary' | |
| flat_dict = {} | |
| for key in dic.keys(): | |
| if isinstance(dic[key], dict): | |
| sub_dict = dict_flatten(dic[key], sep=sep) | |
| for sub_key in sub_dict.keys(): | |
| flat_dict[str(key) + sep + str(sub_key)] = sub_dict[sub_key] | |
| else: | |
| flat_dict[key] = dic[key] | |
| return flat_dict | |
| def make_grid(images, nrow=None, ncol=None, aspect_ratio=None): | |
| num_images = len(images) | |
| if nrow is None and ncol is None: | |
| if aspect_ratio is not None: | |
| nrow = int(np.round(np.sqrt(num_images / aspect_ratio))) | |
| else: | |
| nrow = int(np.sqrt(num_images)) | |
| ncol = (num_images + nrow - 1) // nrow | |
| elif nrow is None and ncol is not None: | |
| nrow = (num_images + ncol - 1) // ncol | |
| elif nrow is not None and ncol is None: | |
| ncol = (num_images + nrow - 1) // nrow | |
| else: | |
| assert nrow * ncol >= num_images, 'nrow * ncol must be greater than or equal to the number of images' | |
| grid = np.zeros((nrow * images[0].shape[0], ncol * images[0].shape[1], images[0].shape[2]), dtype=images[0].dtype) | |
| for i, img in enumerate(images): | |
| row = i // ncol | |
| col = i % ncol | |
| grid[row * img.shape[0]:(row + 1) * img.shape[0], col * img.shape[1]:(col + 1) * img.shape[1]] = img | |
| return grid | |
| def notes_on_image(img, notes=None): | |
| img = np.pad(img, ((0, 32), (0, 0), (0, 0)), 'constant', constant_values=0) | |
| img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
| if notes is not None: | |
| img = cv2.putText(img, notes, (0, img.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1) | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| return img | |
| def save_image_with_notes(img, path, notes=None): | |
| """ | |
| Save an image with notes. | |
| """ | |
| if isinstance(img, torch.Tensor): | |
| img = img.cpu().numpy().transpose(1, 2, 0) | |
| if img.dtype == np.float32 or img.dtype == np.float64: | |
| img = np.clip(img * 255, 0, 255).astype(np.uint8) | |
| img = notes_on_image(img, notes) | |
| cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) | |
| # debug utils | |
| def atol(x, y): | |
| """ | |
| Absolute tolerance. | |
| """ | |
| return torch.abs(x - y) | |
| def rtol(x, y): | |
| """ | |
| Relative tolerance. | |
| """ | |
| return torch.abs(x - y) / torch.clamp_min(torch.maximum(torch.abs(x), torch.abs(y)), 1e-12) | |
| # print utils | |
| def indent(s, n=4): | |
| """ | |
| Indent a string. | |
| """ | |
| lines = s.split('\n') | |
| for i in range(1, len(lines)): | |
| lines[i] = ' ' * n + lines[i] | |
| return '\n'.join(lines) | |