Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # | |
| # NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property | |
| # and proprietary rights in and to this software, related documentation | |
| # and any modifications thereto. Any use, reproduction, disclosure or | |
| # distribution of this software and related documentation without an express | |
| # license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. | |
| import torch | |
| from .tables import * | |
| __all__ = [ | |
| 'FlexiCubes' | |
| ] | |
| class FlexiCubes: | |
| def __init__(self, device="cuda"): | |
| self.device = device | |
| self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False) | |
| self.num_vd_table = torch.tensor(num_vd_table, | |
| dtype=torch.long, device=device, requires_grad=False) | |
| self.check_table = torch.tensor( | |
| check_table, | |
| dtype=torch.long, device=device, requires_grad=False) | |
| self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False) | |
| self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False) | |
| self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False) | |
| self.quad_split_train = torch.tensor( | |
| [0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False) | |
| self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [ | |
| 1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device) | |
| self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False)) | |
| self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6, | |
| 2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False) | |
| self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1], | |
| dtype=torch.long, device=device) | |
| self.dir_faces_table = torch.tensor([ | |
| [[5, 4], [3, 2], [4, 5], [2, 3]], | |
| [[5, 4], [1, 0], [4, 5], [0, 1]], | |
| [[3, 2], [1, 0], [2, 3], [0, 1]] | |
| ], dtype=torch.long, device=device) | |
| self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device) | |
| def __call__(self, voxelgrid_vertices, scalar_field, cube_idx, resolution, qef_reg_scale=1e-3, | |
| weight_scale=0.99, beta=None, alpha=None, gamma_f=None, voxelgrid_colors=None, training=False): | |
| surf_cubes, occ_fx8 = self._identify_surf_cubes(scalar_field, cube_idx) | |
| if surf_cubes.sum() == 0: | |
| return ( | |
| torch.zeros((0, 3), device=self.device), | |
| torch.zeros((0, 3), dtype=torch.long, device=self.device), | |
| torch.zeros((0), device=self.device), | |
| torch.zeros((0, voxelgrid_colors.shape[-1]), device=self.device) if voxelgrid_colors is not None else None | |
| ) | |
| beta, alpha, gamma_f = self._normalize_weights( | |
| beta, alpha, gamma_f, surf_cubes, weight_scale) | |
| if voxelgrid_colors is not None: | |
| voxelgrid_colors = torch.sigmoid(voxelgrid_colors) | |
| case_ids = self._get_case_id(occ_fx8, surf_cubes, resolution) | |
| surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges( | |
| scalar_field, cube_idx, surf_cubes | |
| ) | |
| vd, L_dev, vd_gamma, vd_idx_map, vd_color = self._compute_vd( | |
| voxelgrid_vertices, cube_idx[surf_cubes], surf_edges, scalar_field, | |
| case_ids, beta, alpha, gamma_f, idx_map, qef_reg_scale, voxelgrid_colors) | |
| vertices, faces, s_edges, edge_indices, vertices_color = self._triangulate( | |
| scalar_field, surf_edges, vd, vd_gamma, edge_counts, idx_map, | |
| vd_idx_map, surf_edges_mask, training, vd_color) | |
| return vertices, faces, L_dev, vertices_color | |
| def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges): | |
| """ | |
| Regularizer L_dev as in Equation 8 | |
| """ | |
| dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1) | |
| mean_l2 = torch.zeros_like(vd[:, 0]) | |
| mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float() | |
| mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs() | |
| return mad | |
| def _normalize_weights(self, beta, alpha, gamma_f, surf_cubes, weight_scale): | |
| """ | |
| Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones. | |
| """ | |
| n_cubes = surf_cubes.shape[0] | |
| if beta is not None: | |
| beta = (torch.tanh(beta) * weight_scale + 1) | |
| else: | |
| beta = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device) | |
| if alpha is not None: | |
| alpha = (torch.tanh(alpha) * weight_scale + 1) | |
| else: | |
| alpha = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device) | |
| if gamma_f is not None: | |
| gamma_f = torch.sigmoid(gamma_f) * weight_scale + (1 - weight_scale) / 2 | |
| else: | |
| gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device) | |
| return beta[surf_cubes], alpha[surf_cubes], gamma_f[surf_cubes] | |
| def _get_case_id(self, occ_fx8, surf_cubes, res): | |
| """ | |
| Obtains the ID of topology cases based on cell corner occupancy. This function resolves the | |
| ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the | |
| supplementary material. It should be noted that this function assumes a regular grid. | |
| """ | |
| case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1) | |
| problem_config = self.check_table.to(self.device)[case_ids] | |
| to_check = problem_config[..., 0] == 1 | |
| problem_config = problem_config[to_check] | |
| if not isinstance(res, (list, tuple)): | |
| res = [res, res, res] | |
| # The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array, | |
| # 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes). | |
| # This allows efficient checking on adjacent cubes. | |
| problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long) | |
| vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3 | |
| vol_idx_problem = vol_idx[surf_cubes][to_check] | |
| problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config | |
| vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4] | |
| within_range = ( | |
| vol_idx_problem_adj[..., 0] >= 0) & ( | |
| vol_idx_problem_adj[..., 0] < res[0]) & ( | |
| vol_idx_problem_adj[..., 1] >= 0) & ( | |
| vol_idx_problem_adj[..., 1] < res[1]) & ( | |
| vol_idx_problem_adj[..., 2] >= 0) & ( | |
| vol_idx_problem_adj[..., 2] < res[2]) | |
| vol_idx_problem = vol_idx_problem[within_range] | |
| vol_idx_problem_adj = vol_idx_problem_adj[within_range] | |
| problem_config = problem_config[within_range] | |
| problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0], | |
| vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]] | |
| # If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted. | |
| to_invert = (problem_config_adj[..., 0] == 1) | |
| idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert] | |
| case_ids.index_put_((idx,), problem_config[to_invert][..., -1]) | |
| return case_ids | |
| def _identify_surf_edges(self, scalar_field, cube_idx, surf_cubes): | |
| """ | |
| Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge | |
| can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge | |
| and marks the cube edges with this index. | |
| """ | |
| occ_n = scalar_field < 0 | |
| all_edges = cube_idx[surf_cubes][:, self.cube_edges].reshape(-1, 2) | |
| unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True) | |
| unique_edges = unique_edges.long() | |
| mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 | |
| surf_edges_mask = mask_edges[_idx_map] | |
| counts = counts[_idx_map] | |
| mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_idx.device) * -1 | |
| mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_idx.device) | |
| # Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index | |
| # for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1. | |
| idx_map = mapping[_idx_map] | |
| surf_edges = unique_edges[mask_edges] | |
| return surf_edges, idx_map, counts, surf_edges_mask | |
| def _identify_surf_cubes(self, scalar_field, cube_idx): | |
| """ | |
| Identifies grid cubes that intersect with the underlying surface by checking if the signs at | |
| all corners are not identical. | |
| """ | |
| occ_n = scalar_field < 0 | |
| occ_fx8 = occ_n[cube_idx.reshape(-1)].reshape(-1, 8) | |
| _occ_sum = torch.sum(occ_fx8, -1) | |
| surf_cubes = (_occ_sum > 0) & (_occ_sum < 8) | |
| return surf_cubes, occ_fx8 | |
| def _linear_interp(self, edges_weight, edges_x): | |
| """ | |
| Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'. | |
| """ | |
| edge_dim = edges_weight.dim() - 2 | |
| assert edges_weight.shape[edge_dim] == 2 | |
| edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), - | |
| torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)] | |
| , edge_dim) | |
| denominator = edges_weight.sum(edge_dim) | |
| ue = (edges_x * edges_weight).sum(edge_dim) / denominator | |
| return ue | |
| def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3, qef_reg_scale): | |
| p_bxnx3 = p_bxnx3.reshape(-1, 7, 3) | |
| norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3) | |
| c_bx3 = c_bx3.reshape(-1, 3) | |
| A = norm_bxnx3 | |
| B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True) | |
| A_reg = (torch.eye(3, device=p_bxnx3.device) * qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1) | |
| B_reg = (qef_reg_scale * c_bx3).unsqueeze(-1) | |
| A = torch.cat([A, A_reg], 1) | |
| B = torch.cat([B, B_reg], 1) | |
| dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1) | |
| return dual_verts | |
| def _compute_vd(self, voxelgrid_vertices, surf_cubes_fx8, surf_edges, scalar_field, | |
| case_ids, beta, alpha, gamma_f, idx_map, qef_reg_scale, voxelgrid_colors): | |
| """ | |
| Computes the location of dual vertices as described in Section 4.2 | |
| """ | |
| alpha_nx12x2 = torch.index_select(input=alpha, index=self.cube_edges, dim=1).reshape(-1, 12, 2) | |
| surf_edges_x = torch.index_select(input=voxelgrid_vertices, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3) | |
| surf_edges_s = torch.index_select(input=scalar_field, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1) | |
| zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x) | |
| if voxelgrid_colors is not None: | |
| C = voxelgrid_colors.shape[-1] | |
| surf_edges_c = torch.index_select(input=voxelgrid_colors, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, C) | |
| idx_map = idx_map.reshape(-1, 12) | |
| num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0) | |
| edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], [] | |
| # if color is not None: | |
| # vd_color = [] | |
| total_num_vd = 0 | |
| vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False) | |
| for num in torch.unique(num_vd): | |
| cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching) | |
| curr_num_vd = cur_cubes.sum() * num | |
| curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7) | |
| curr_edge_group_to_vd = torch.arange( | |
| curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd | |
| total_num_vd += curr_num_vd | |
| curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[ | |
| cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group) | |
| curr_mask = (curr_edge_group != -1) | |
| edge_group.append(torch.masked_select(curr_edge_group, curr_mask)) | |
| edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask)) | |
| edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask)) | |
| vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True)) | |
| vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1)) | |
| # if color is not None: | |
| # vd_color.append(color[cur_cubes].unsqueeze(1).repeat(1, num, 1).reshape(-1, 3)) | |
| edge_group = torch.cat(edge_group) | |
| edge_group_to_vd = torch.cat(edge_group_to_vd) | |
| edge_group_to_cube = torch.cat(edge_group_to_cube) | |
| vd_num_edges = torch.cat(vd_num_edges) | |
| vd_gamma = torch.cat(vd_gamma) | |
| # if color is not None: | |
| # vd_color = torch.cat(vd_color) | |
| # else: | |
| # vd_color = None | |
| vd = torch.zeros((total_num_vd, 3), device=self.device) | |
| beta_sum = torch.zeros((total_num_vd, 1), device=self.device) | |
| idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group) | |
| x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3) | |
| s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1) | |
| zero_crossing_group = torch.index_select( | |
| input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3) | |
| alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0, | |
| index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1) | |
| ue_group = self._linear_interp(s_group * alpha_group, x_group) | |
| beta_group = torch.gather(input=beta.reshape(-1), dim=0, | |
| index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1) | |
| beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group) | |
| vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum | |
| ''' | |
| interpolate colors use the same method as dual vertices | |
| ''' | |
| if voxelgrid_colors is not None: | |
| vd_color = torch.zeros((total_num_vd, C), device=self.device) | |
| c_group = torch.index_select(input=surf_edges_c, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, C) | |
| uc_group = self._linear_interp(s_group * alpha_group, c_group) | |
| vd_color = vd_color.index_add_(0, index=edge_group_to_vd, source=uc_group * beta_group) / beta_sum | |
| else: | |
| vd_color = None | |
| L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges) | |
| v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd | |
| vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube * | |
| 12 + edge_group, src=v_idx[edge_group_to_vd]) | |
| return vd, L_dev, vd_gamma, vd_idx_map, vd_color | |
| def _triangulate(self, scalar_field, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, vd_color): | |
| """ | |
| Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into | |
| triangles based on the gamma parameter, as described in Section 4.3. | |
| """ | |
| with torch.no_grad(): | |
| group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes. | |
| group = idx_map.reshape(-1)[group_mask] | |
| vd_idx = vd_idx_map[group_mask] | |
| edge_indices, indices = torch.sort(group, stable=True) | |
| quad_vd_idx = vd_idx[indices].reshape(-1, 4) | |
| # Ensure all face directions point towards the positive SDF to maintain consistent winding. | |
| s_edges = scalar_field[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2) | |
| flip_mask = s_edges[:, 0] > 0 | |
| quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]], | |
| quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]])) | |
| quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4) | |
| gamma_02 = quad_gamma[:, 0] * quad_gamma[:, 2] | |
| gamma_13 = quad_gamma[:, 1] * quad_gamma[:, 3] | |
| if not training: | |
| mask = (gamma_02 > gamma_13) | |
| faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device) | |
| faces[mask] = quad_vd_idx[mask][:, self.quad_split_1] | |
| faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2] | |
| faces = faces.reshape(-1, 3) | |
| else: | |
| vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3) | |
| vd_02 = (vd_quad[:, 0] + vd_quad[:, 2]) / 2 | |
| vd_13 = (vd_quad[:, 1] + vd_quad[:, 3]) / 2 | |
| weight_sum = (gamma_02 + gamma_13) + 1e-8 | |
| vd_center = (vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) / weight_sum.unsqueeze(-1) | |
| if vd_color is not None: | |
| color_quad = torch.index_select(input=vd_color, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, vd_color.shape[-1]) | |
| color_02 = (color_quad[:, 0] + color_quad[:, 2]) / 2 | |
| color_13 = (color_quad[:, 1] + color_quad[:, 3]) / 2 | |
| color_center = (color_02 * gamma_02.unsqueeze(-1) + color_13 * gamma_13.unsqueeze(-1)) / weight_sum.unsqueeze(-1) | |
| vd_color = torch.cat([vd_color, color_center]) | |
| vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0] | |
| vd = torch.cat([vd, vd_center]) | |
| faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2) | |
| faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3) | |
| return vd, faces, s_edges, edge_indices, vd_color |