Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import json | |
| from typing import * | |
| import numpy as np | |
| import torch | |
| import utils3d | |
| from ..representations.octree import DfsOctree as Octree | |
| from ..renderers import OctreeRenderer | |
| from .components import StandardDatasetBase, TextConditionedMixin, ImageConditionedMixin | |
| from .. import models | |
| from ..utils.dist_utils import read_file_dist | |
| class SparseStructureLatentVisMixin: | |
| def __init__( | |
| self, | |
| *args, | |
| pretrained_ss_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/ss_dec_conv3d_16l8_fp16', | |
| ss_dec_path: Optional[str] = None, | |
| ss_dec_ckpt: Optional[str] = None, | |
| **kwargs | |
| ): | |
| super().__init__(*args, **kwargs) | |
| self.ss_dec = None | |
| self.pretrained_ss_dec = pretrained_ss_dec | |
| self.ss_dec_path = ss_dec_path | |
| self.ss_dec_ckpt = ss_dec_ckpt | |
| def _loading_ss_dec(self): | |
| if self.ss_dec is not None: | |
| return | |
| if self.ss_dec_path is not None: | |
| cfg = json.load(open(os.path.join(self.ss_dec_path, 'config.json'), 'r')) | |
| decoder = getattr(models, cfg['models']['decoder']['name'])(**cfg['models']['decoder']['args']) | |
| ckpt_path = os.path.join(self.ss_dec_path, 'ckpts', f'decoder_{self.ss_dec_ckpt}.pt') | |
| decoder.load_state_dict(torch.load(read_file_dist(ckpt_path), map_location='cpu', weights_only=True)) | |
| else: | |
| decoder = models.from_pretrained(self.pretrained_ss_dec) | |
| self.ss_dec = decoder.cuda().eval() | |
| def _delete_ss_dec(self): | |
| del self.ss_dec | |
| self.ss_dec = None | |
| def decode_latent(self, z, batch_size=4): | |
| self._loading_ss_dec() | |
| ss = [] | |
| if self.normalization is not None: | |
| z = z * self.std.to(z.device) + self.mean.to(z.device) | |
| for i in range(0, z.shape[0], batch_size): | |
| ss.append(self.ss_dec(z[i:i+batch_size])) | |
| ss = torch.cat(ss, dim=0) | |
| self._delete_ss_dec() | |
| return ss | |
| def visualize_sample(self, x_0: Union[torch.Tensor, dict]): | |
| x_0 = x_0 if isinstance(x_0, torch.Tensor) else x_0['x_0'] | |
| x_0 = self.decode_latent(x_0.cuda()) | |
| renderer = OctreeRenderer() | |
| renderer.rendering_options.resolution = 512 | |
| renderer.rendering_options.near = 0.8 | |
| renderer.rendering_options.far = 1.6 | |
| renderer.rendering_options.bg_color = (0, 0, 0) | |
| renderer.rendering_options.ssaa = 4 | |
| renderer.pipe.primitive = 'voxel' | |
| # Build camera | |
| yaws = [0, np.pi / 2, np.pi, 3 * np.pi / 2] | |
| yaws_offset = np.random.uniform(-np.pi / 4, np.pi / 4) | |
| yaws = [y + yaws_offset for y in yaws] | |
| pitch = [np.random.uniform(-np.pi / 4, np.pi / 4) for _ in range(4)] | |
| exts = [] | |
| ints = [] | |
| for yaw, pitch in zip(yaws, pitch): | |
| orig = torch.tensor([ | |
| np.sin(yaw) * np.cos(pitch), | |
| np.cos(yaw) * np.cos(pitch), | |
| np.sin(pitch), | |
| ]).float().cuda() * 2 | |
| fov = torch.deg2rad(torch.tensor(30)).cuda() | |
| extrinsics = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda()) | |
| intrinsics = utils3d.torch.intrinsics_from_fov_xy(fov, fov) | |
| exts.append(extrinsics) | |
| ints.append(intrinsics) | |
| images = [] | |
| # Build each representation | |
| x_0 = x_0.cuda() | |
| for i in range(x_0.shape[0]): | |
| representation = Octree( | |
| depth=10, | |
| aabb=[-0.5, -0.5, -0.5, 1, 1, 1], | |
| device='cuda', | |
| primitive='voxel', | |
| sh_degree=0, | |
| primitive_config={'solid': True}, | |
| ) | |
| coords = torch.nonzero(x_0[i, 0] > 0, as_tuple=False) | |
| resolution = x_0.shape[-1] | |
| representation.position = coords.float() / resolution | |
| representation.depth = torch.full((representation.position.shape[0], 1), int(np.log2(resolution)), dtype=torch.uint8, device='cuda') | |
| image = torch.zeros(3, 1024, 1024).cuda() | |
| tile = [2, 2] | |
| for j, (ext, intr) in enumerate(zip(exts, ints)): | |
| res = renderer.render(representation, ext, intr, colors_overwrite=representation.position) | |
| image[:, 512 * (j // tile[1]):512 * (j // tile[1] + 1), 512 * (j % tile[1]):512 * (j % tile[1] + 1)] = res['color'] | |
| images.append(image) | |
| return torch.stack(images) | |
| class SparseStructureLatent(SparseStructureLatentVisMixin, StandardDatasetBase): | |
| """ | |
| Sparse structure latent dataset | |
| Args: | |
| roots (str): path to the dataset | |
| latent_model (str): name of the latent model | |
| min_aesthetic_score (float): minimum aesthetic score | |
| normalization (dict): normalization stats | |
| pretrained_ss_dec (str): name of the pretrained sparse structure decoder | |
| ss_dec_path (str): path to the sparse structure decoder, if given, will override the pretrained_ss_dec | |
| ss_dec_ckpt (str): name of the sparse structure decoder checkpoint | |
| """ | |
| def __init__(self, | |
| roots: str, | |
| *, | |
| latent_model: str, | |
| min_aesthetic_score: float = 5.0, | |
| normalization: Optional[dict] = None, | |
| pretrained_ss_dec: str = 'JeffreyXiang/TRELLIS-image-large/ckpts/ss_dec_conv3d_16l8_fp16', | |
| ss_dec_path: Optional[str] = None, | |
| ss_dec_ckpt: Optional[str] = None, | |
| ): | |
| self.latent_model = latent_model | |
| self.min_aesthetic_score = min_aesthetic_score | |
| self.normalization = normalization | |
| self.value_range = (0, 1) | |
| super().__init__( | |
| roots, | |
| pretrained_ss_dec=pretrained_ss_dec, | |
| ss_dec_path=ss_dec_path, | |
| ss_dec_ckpt=ss_dec_ckpt, | |
| ) | |
| if self.normalization is not None: | |
| self.mean = torch.tensor(self.normalization['mean']).reshape(-1, 1, 1, 1) | |
| self.std = torch.tensor(self.normalization['std']).reshape(-1, 1, 1, 1) | |
| def filter_metadata(self, metadata): | |
| stats = {} | |
| metadata = metadata[metadata[f'ss_latent_{self.latent_model}']] | |
| stats['With sparse structure latents'] = len(metadata) | |
| metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score] | |
| stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata) | |
| return metadata, stats | |
| def get_instance(self, root, instance): | |
| latent = np.load(os.path.join(root, 'ss_latents', self.latent_model, f'{instance}.npz')) | |
| z = torch.tensor(latent['mean']).float() | |
| if self.normalization is not None: | |
| z = (z - self.mean) / self.std | |
| pack = { | |
| 'x_0': z, | |
| } | |
| return pack | |
| class TextConditionedSparseStructureLatent(TextConditionedMixin, SparseStructureLatent): | |
| """ | |
| Text-conditioned sparse structure dataset | |
| """ | |
| pass | |
| class ImageConditionedSparseStructureLatent(ImageConditionedMixin, SparseStructureLatent): | |
| """ | |
| Image-conditioned sparse structure dataset | |
| """ | |
| pass | |