Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import json | |
| import argparse | |
| import numpy as np | |
| import pandas as pd | |
| from tqdm import tqdm | |
| from easydict import EasyDict as edict | |
| from concurrent.futures import ThreadPoolExecutor | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--output_dir', type=str, required=True, | |
| help='Directory to save the metadata') | |
| parser.add_argument('--filter_low_aesthetic_score', type=float, default=None, | |
| help='Filter objects with aesthetic score lower than this value') | |
| parser.add_argument('--model', type=str, default='dinov2_vitl14_reg_slat_enc_swin8_B_64l8_fp16', | |
| help='Latent model to use') | |
| parser.add_argument('--num_samples', type=int, default=50000, | |
| help='Number of samples to use for calculating stats') | |
| opt = parser.parse_args() | |
| opt = edict(vars(opt)) | |
| # get file list | |
| if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')): | |
| metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv')) | |
| else: | |
| raise ValueError('metadata.csv not found') | |
| if opt.filter_low_aesthetic_score is not None: | |
| metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score] | |
| metadata = metadata[metadata[f'latent_{opt.model}'] == True] | |
| sha256s = metadata['sha256'].values | |
| sha256s = np.random.choice(sha256s, min(opt.num_samples, len(sha256s)), replace=False) | |
| # stats | |
| means = [] | |
| mean2s = [] | |
| with ThreadPoolExecutor(max_workers=16) as executor, \ | |
| tqdm(total=len(sha256s), desc="Extracting features") as pbar: | |
| def worker(sha256): | |
| try: | |
| feats = np.load(os.path.join(opt.output_dir, 'latents', opt.model, f'{sha256}.npz')) | |
| feats = feats['feats'] | |
| means.append(feats.mean(axis=0)) | |
| mean2s.append((feats ** 2).mean(axis=0)) | |
| pbar.update() | |
| except Exception as e: | |
| print(f"Error extracting features for {sha256}: {e}") | |
| pbar.update() | |
| executor.map(worker, sha256s) | |
| executor.shutdown(wait=True) | |
| mean = np.array(means).mean(axis=0) | |
| mean2 = np.array(mean2s).mean(axis=0) | |
| std = np.sqrt(mean2 - mean ** 2) | |
| print('mean:', mean) | |
| print('std:', std) | |
| with open(os.path.join(opt.output_dir, 'latents', opt.model, 'stats.json'), 'w') as f: | |
| json.dump({ | |
| 'mean': mean.tolist(), | |
| 'std': std.tolist(), | |
| }, f, indent=4) | |