Spaces:
Running
on
Zero
Running
on
Zero
| from typing import * | |
| import numpy as np | |
| import torch | |
| import utils3d | |
| import nvdiffrast.torch as dr | |
| from tqdm import tqdm | |
| import trimesh | |
| import trimesh.visual | |
| import xatlas | |
| import pyvista as pv | |
| from pymeshfix import _meshfix | |
| import igraph | |
| import cv2 | |
| from PIL import Image | |
| from .random_utils import sphere_hammersley_sequence | |
| from .render_utils import render_multiview | |
| from ..renderers import GaussianRenderer | |
| from ..representations import Strivec, Gaussian, MeshExtractResult | |
| def _fill_holes( | |
| verts, | |
| faces, | |
| max_hole_size=0.04, | |
| max_hole_nbe=32, | |
| resolution=128, | |
| num_views=500, | |
| debug=False, | |
| verbose=False | |
| ): | |
| """ | |
| Rasterize a mesh from multiple views and remove invisible faces. | |
| Also includes postprocessing to: | |
| 1. Remove connected components that are have low visibility. | |
| 2. Mincut to remove faces at the inner side of the mesh connected to the outer side with a small hole. | |
| Args: | |
| verts (torch.Tensor): Vertices of the mesh. Shape (V, 3). | |
| faces (torch.Tensor): Faces of the mesh. Shape (F, 3). | |
| max_hole_size (float): Maximum area of a hole to fill. | |
| resolution (int): Resolution of the rasterization. | |
| num_views (int): Number of views to rasterize the mesh. | |
| verbose (bool): Whether to print progress. | |
| """ | |
| # Construct cameras | |
| yaws = [] | |
| pitchs = [] | |
| for i in range(num_views): | |
| y, p = sphere_hammersley_sequence(i, num_views) | |
| yaws.append(y) | |
| pitchs.append(p) | |
| yaws = torch.tensor(yaws).cuda() | |
| pitchs = torch.tensor(pitchs).cuda() | |
| radius = 2.0 | |
| fov = torch.deg2rad(torch.tensor(40)).cuda() | |
| projection = utils3d.torch.perspective_from_fov_xy(fov, fov, 1, 3) | |
| views = [] | |
| for (yaw, pitch) in zip(yaws, pitchs): | |
| orig = torch.tensor([ | |
| torch.sin(yaw) * torch.cos(pitch), | |
| torch.cos(yaw) * torch.cos(pitch), | |
| torch.sin(pitch), | |
| ]).cuda().float() * radius | |
| view = utils3d.torch.view_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda()) | |
| views.append(view) | |
| views = torch.stack(views, dim=0) | |
| # Rasterize | |
| visblity = torch.zeros(faces.shape[0], dtype=torch.int32, device=verts.device) | |
| rastctx = utils3d.torch.RastContext(backend='cuda') | |
| for i in tqdm(range(views.shape[0]), total=views.shape[0], disable=not verbose, desc='Rasterizing'): | |
| view = views[i] | |
| buffers = utils3d.torch.rasterize_triangle_faces( | |
| rastctx, verts[None], faces, resolution, resolution, view=view, projection=projection | |
| ) | |
| face_id = buffers['face_id'][0][buffers['mask'][0] > 0.95] - 1 | |
| face_id = torch.unique(face_id).long() | |
| visblity[face_id] += 1 | |
| visblity = visblity.float() / num_views | |
| # Mincut | |
| ## construct outer faces | |
| edges, face2edge, edge_degrees = utils3d.torch.compute_edges(faces) | |
| boundary_edge_indices = torch.nonzero(edge_degrees == 1).reshape(-1) | |
| connected_components = utils3d.torch.compute_connected_components(faces, edges, face2edge) | |
| outer_face_indices = torch.zeros(faces.shape[0], dtype=torch.bool, device=faces.device) | |
| for i in range(len(connected_components)): | |
| outer_face_indices[connected_components[i]] = visblity[connected_components[i]] > min(max(visblity[connected_components[i]].quantile(0.75).item(), 0.25), 0.5) | |
| outer_face_indices = outer_face_indices.nonzero().reshape(-1) | |
| ## construct inner faces | |
| inner_face_indices = torch.nonzero(visblity == 0).reshape(-1) | |
| if verbose: | |
| tqdm.write(f'Found {inner_face_indices.shape[0]} invisible faces') | |
| if inner_face_indices.shape[0] == 0: | |
| return verts, faces | |
| ## Construct dual graph (faces as nodes, edges as edges) | |
| dual_edges, dual_edge2edge = utils3d.torch.compute_dual_graph(face2edge) | |
| dual_edge2edge = edges[dual_edge2edge] | |
| dual_edges_weights = torch.norm(verts[dual_edge2edge[:, 0]] - verts[dual_edge2edge[:, 1]], dim=1) | |
| if verbose: | |
| tqdm.write(f'Dual graph: {dual_edges.shape[0]} edges') | |
| ## solve mincut problem | |
| ### construct main graph | |
| g = igraph.Graph() | |
| g.add_vertices(faces.shape[0]) | |
| g.add_edges(dual_edges.cpu().numpy()) | |
| g.es['weight'] = dual_edges_weights.cpu().numpy() | |
| ### source and target | |
| g.add_vertex('s') | |
| g.add_vertex('t') | |
| ### connect invisible faces to source | |
| g.add_edges([(f, 's') for f in inner_face_indices], attributes={'weight': torch.ones(inner_face_indices.shape[0], dtype=torch.float32).cpu().numpy()}) | |
| ### connect outer faces to target | |
| g.add_edges([(f, 't') for f in outer_face_indices], attributes={'weight': torch.ones(outer_face_indices.shape[0], dtype=torch.float32).cpu().numpy()}) | |
| ### solve mincut | |
| cut = g.mincut('s', 't', (np.array(g.es['weight']) * 1000).tolist()) | |
| remove_face_indices = torch.tensor([v for v in cut.partition[0] if v < faces.shape[0]], dtype=torch.long, device=faces.device) | |
| if verbose: | |
| tqdm.write(f'Mincut solved, start checking the cut') | |
| ### check if the cut is valid with each connected component | |
| to_remove_cc = utils3d.torch.compute_connected_components(faces[remove_face_indices]) | |
| if debug: | |
| tqdm.write(f'Number of connected components of the cut: {len(to_remove_cc)}') | |
| valid_remove_cc = [] | |
| cutting_edges = [] | |
| for cc in to_remove_cc: | |
| #### check if the connected component has low visibility | |
| visblity_median = visblity[remove_face_indices[cc]].median() | |
| if debug: | |
| tqdm.write(f'visblity_median: {visblity_median}') | |
| if visblity_median > 0.25: | |
| continue | |
| #### check if the cuting loop is small enough | |
| cc_edge_indices, cc_edges_degree = torch.unique(face2edge[remove_face_indices[cc]], return_counts=True) | |
| cc_boundary_edge_indices = cc_edge_indices[cc_edges_degree == 1] | |
| cc_new_boundary_edge_indices = cc_boundary_edge_indices[~torch.isin(cc_boundary_edge_indices, boundary_edge_indices)] | |
| if len(cc_new_boundary_edge_indices) > 0: | |
| cc_new_boundary_edge_cc = utils3d.torch.compute_edge_connected_components(edges[cc_new_boundary_edge_indices]) | |
| cc_new_boundary_edges_cc_center = [verts[edges[cc_new_boundary_edge_indices[edge_cc]]].mean(dim=1).mean(dim=0) for edge_cc in cc_new_boundary_edge_cc] | |
| cc_new_boundary_edges_cc_area = [] | |
| for i, edge_cc in enumerate(cc_new_boundary_edge_cc): | |
| _e1 = verts[edges[cc_new_boundary_edge_indices[edge_cc]][:, 0]] - cc_new_boundary_edges_cc_center[i] | |
| _e2 = verts[edges[cc_new_boundary_edge_indices[edge_cc]][:, 1]] - cc_new_boundary_edges_cc_center[i] | |
| cc_new_boundary_edges_cc_area.append(torch.norm(torch.cross(_e1, _e2, dim=-1), dim=1).sum() * 0.5) | |
| if debug: | |
| cutting_edges.append(cc_new_boundary_edge_indices) | |
| tqdm.write(f'Area of the cutting loop: {cc_new_boundary_edges_cc_area}') | |
| if any([l > max_hole_size for l in cc_new_boundary_edges_cc_area]): | |
| continue | |
| valid_remove_cc.append(cc) | |
| if debug: | |
| face_v = verts[faces].mean(dim=1).cpu().numpy() | |
| vis_dual_edges = dual_edges.cpu().numpy() | |
| vis_colors = np.zeros((faces.shape[0], 3), dtype=np.uint8) | |
| vis_colors[inner_face_indices.cpu().numpy()] = [0, 0, 255] | |
| vis_colors[outer_face_indices.cpu().numpy()] = [0, 255, 0] | |
| vis_colors[remove_face_indices.cpu().numpy()] = [255, 0, 255] | |
| if len(valid_remove_cc) > 0: | |
| vis_colors[remove_face_indices[torch.cat(valid_remove_cc)].cpu().numpy()] = [255, 0, 0] | |
| utils3d.io.write_ply('dbg_dual.ply', face_v, edges=vis_dual_edges, vertex_colors=vis_colors) | |
| vis_verts = verts.cpu().numpy() | |
| vis_edges = edges[torch.cat(cutting_edges)].cpu().numpy() | |
| utils3d.io.write_ply('dbg_cut.ply', vis_verts, edges=vis_edges) | |
| if len(valid_remove_cc) > 0: | |
| remove_face_indices = remove_face_indices[torch.cat(valid_remove_cc)] | |
| mask = torch.ones(faces.shape[0], dtype=torch.bool, device=faces.device) | |
| mask[remove_face_indices] = 0 | |
| faces = faces[mask] | |
| faces, verts = utils3d.torch.remove_unreferenced_vertices(faces, verts) | |
| if verbose: | |
| tqdm.write(f'Removed {(~mask).sum()} faces by mincut') | |
| else: | |
| if verbose: | |
| tqdm.write(f'Removed 0 faces by mincut') | |
| mesh = _meshfix.PyTMesh() | |
| mesh.load_array(verts.cpu().numpy(), faces.cpu().numpy()) | |
| mesh.fill_small_boundaries(nbe=max_hole_nbe, refine=True) | |
| verts, faces = mesh.return_arrays() | |
| verts, faces = torch.tensor(verts, device='cuda', dtype=torch.float32), torch.tensor(faces, device='cuda', dtype=torch.int32) | |
| return verts, faces | |
| def postprocess_mesh( | |
| vertices: np.array, | |
| faces: np.array, | |
| simplify: bool = True, | |
| simplify_ratio: float = 0.9, | |
| fill_holes: bool = True, | |
| fill_holes_max_hole_size: float = 0.04, | |
| fill_holes_max_hole_nbe: int = 32, | |
| fill_holes_resolution: int = 1024, | |
| fill_holes_num_views: int = 1000, | |
| debug: bool = False, | |
| verbose: bool = False, | |
| ): | |
| """ | |
| Postprocess a mesh by simplifying, removing invisible faces, and removing isolated pieces. | |
| Args: | |
| vertices (np.array): Vertices of the mesh. Shape (V, 3). | |
| faces (np.array): Faces of the mesh. Shape (F, 3). | |
| simplify (bool): Whether to simplify the mesh, using quadric edge collapse. | |
| simplify_ratio (float): Ratio of faces to keep after simplification. | |
| fill_holes (bool): Whether to fill holes in the mesh. | |
| fill_holes_max_hole_size (float): Maximum area of a hole to fill. | |
| fill_holes_max_hole_nbe (int): Maximum number of boundary edges of a hole to fill. | |
| fill_holes_resolution (int): Resolution of the rasterization. | |
| fill_holes_num_views (int): Number of views to rasterize the mesh. | |
| verbose (bool): Whether to print progress. | |
| """ | |
| if verbose: | |
| tqdm.write(f'Before postprocess: {vertices.shape[0]} vertices, {faces.shape[0]} faces') | |
| # Simplify | |
| if simplify and simplify_ratio > 0: | |
| mesh = pv.PolyData(vertices, np.concatenate([np.full((faces.shape[0], 1), 3), faces], axis=1)) | |
| mesh = mesh.decimate(simplify_ratio, progress_bar=verbose) | |
| vertices, faces = mesh.points, mesh.faces.reshape(-1, 4)[:, 1:] | |
| if verbose: | |
| tqdm.write(f'After decimate: {vertices.shape[0]} vertices, {faces.shape[0]} faces') | |
| # Remove invisible faces | |
| if fill_holes: | |
| vertices, faces = torch.tensor(vertices).cuda(), torch.tensor(faces.astype(np.int32)).cuda() | |
| vertices, faces = _fill_holes( | |
| vertices, faces, | |
| max_hole_size=fill_holes_max_hole_size, | |
| max_hole_nbe=fill_holes_max_hole_nbe, | |
| resolution=fill_holes_resolution, | |
| num_views=fill_holes_num_views, | |
| debug=debug, | |
| verbose=verbose, | |
| ) | |
| vertices, faces = vertices.cpu().numpy(), faces.cpu().numpy() | |
| if verbose: | |
| tqdm.write(f'After remove invisible faces: {vertices.shape[0]} vertices, {faces.shape[0]} faces') | |
| return vertices, faces | |
| def parametrize_mesh(vertices: np.array, faces: np.array): | |
| """ | |
| Parametrize a mesh to a texture space, using xatlas. | |
| Args: | |
| vertices (np.array): Vertices of the mesh. Shape (V, 3). | |
| faces (np.array): Faces of the mesh. Shape (F, 3). | |
| """ | |
| vmapping, indices, uvs = xatlas.parametrize(vertices, faces) | |
| vertices = vertices[vmapping] | |
| faces = indices | |
| return vertices, faces, uvs | |
| def bake_texture( | |
| vertices: np.array, | |
| faces: np.array, | |
| uvs: np.array, | |
| observations: List[np.array], | |
| masks: List[np.array], | |
| extrinsics: List[np.array], | |
| intrinsics: List[np.array], | |
| texture_size: int = 2048, | |
| near: float = 0.1, | |
| far: float = 10.0, | |
| mode: Literal['fast', 'opt'] = 'opt', | |
| lambda_tv: float = 1e-2, | |
| verbose: bool = False, | |
| ): | |
| """ | |
| Bake texture to a mesh from multiple observations. | |
| Args: | |
| vertices (np.array): Vertices of the mesh. Shape (V, 3). | |
| faces (np.array): Faces of the mesh. Shape (F, 3). | |
| uvs (np.array): UV coordinates of the mesh. Shape (V, 2). | |
| observations (List[np.array]): List of observations. Each observation is a 2D image. Shape (H, W, 3). | |
| masks (List[np.array]): List of masks. Each mask is a 2D image. Shape (H, W). | |
| extrinsics (List[np.array]): List of extrinsics. Shape (4, 4). | |
| intrinsics (List[np.array]): List of intrinsics. Shape (3, 3). | |
| texture_size (int): Size of the texture. | |
| near (float): Near plane of the camera. | |
| far (float): Far plane of the camera. | |
| mode (Literal['fast', 'opt']): Mode of texture baking. | |
| lambda_tv (float): Weight of total variation loss in optimization. | |
| verbose (bool): Whether to print progress. | |
| """ | |
| vertices = torch.tensor(vertices).cuda() | |
| faces = torch.tensor(faces.astype(np.int32)).cuda() | |
| uvs = torch.tensor(uvs).cuda() | |
| observations = [torch.tensor(obs / 255.0).float().cuda() for obs in observations] | |
| masks = [torch.tensor(m>0).bool().cuda() for m in masks] | |
| views = [utils3d.torch.extrinsics_to_view(torch.tensor(extr).cuda()) for extr in extrinsics] | |
| projections = [utils3d.torch.intrinsics_to_perspective(torch.tensor(intr).cuda(), near, far) for intr in intrinsics] | |
| if mode == 'fast': | |
| texture = torch.zeros((texture_size * texture_size, 3), dtype=torch.float32).cuda() | |
| texture_weights = torch.zeros((texture_size * texture_size), dtype=torch.float32).cuda() | |
| rastctx = utils3d.torch.RastContext(backend='cuda') | |
| for observation, view, projection in tqdm(zip(observations, views, projections), total=len(observations), disable=not verbose, desc='Texture baking (fast)'): | |
| with torch.no_grad(): | |
| rast = utils3d.torch.rasterize_triangle_faces( | |
| rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection | |
| ) | |
| uv_map = rast['uv'][0].detach().flip(0) | |
| mask = rast['mask'][0].detach().bool() & masks[0] | |
| # nearest neighbor interpolation | |
| uv_map = (uv_map * texture_size).floor().long() | |
| obs = observation[mask] | |
| uv_map = uv_map[mask] | |
| idx = uv_map[:, 0] + (texture_size - uv_map[:, 1] - 1) * texture_size | |
| texture = texture.scatter_add(0, idx.view(-1, 1).expand(-1, 3), obs) | |
| texture_weights = texture_weights.scatter_add(0, idx, torch.ones((obs.shape[0]), dtype=torch.float32, device=texture.device)) | |
| mask = texture_weights > 0 | |
| texture[mask] /= texture_weights[mask][:, None] | |
| texture = np.clip(texture.reshape(texture_size, texture_size, 3).cpu().numpy() * 255, 0, 255).astype(np.uint8) | |
| # inpaint | |
| mask = (texture_weights == 0).cpu().numpy().astype(np.uint8).reshape(texture_size, texture_size) | |
| texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA) | |
| elif mode == 'opt': | |
| rastctx = utils3d.torch.RastContext(backend='cuda') | |
| observations = [observations.flip(0) for observations in observations] | |
| masks = [m.flip(0) for m in masks] | |
| _uv = [] | |
| _uv_dr = [] | |
| for observation, view, projection in tqdm(zip(observations, views, projections), total=len(views), disable=not verbose, desc='Texture baking (opt): UV'): | |
| with torch.no_grad(): | |
| rast = utils3d.torch.rasterize_triangle_faces( | |
| rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection | |
| ) | |
| _uv.append(rast['uv'].detach()) | |
| _uv_dr.append(rast['uv_dr'].detach()) | |
| texture = torch.nn.Parameter(torch.zeros((1, texture_size, texture_size, 3), dtype=torch.float32).cuda()) | |
| optimizer = torch.optim.Adam([texture], betas=(0.5, 0.9), lr=1e-2) | |
| def exp_anealing(optimizer, step, total_steps, start_lr, end_lr): | |
| return start_lr * (end_lr / start_lr) ** (step / total_steps) | |
| def cosine_anealing(optimizer, step, total_steps, start_lr, end_lr): | |
| return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps)) | |
| def tv_loss(texture): | |
| return torch.nn.functional.l1_loss(texture[:, :-1, :, :], texture[:, 1:, :, :]) + \ | |
| torch.nn.functional.l1_loss(texture[:, :, :-1, :], texture[:, :, 1:, :]) | |
| total_steps = 2500 | |
| with tqdm(total=total_steps, disable=not verbose, desc='Texture baking (opt): optimizing') as pbar: | |
| for step in range(total_steps): | |
| optimizer.zero_grad() | |
| selected = np.random.randint(0, len(views)) | |
| uv, uv_dr, observation, mask = _uv[selected], _uv_dr[selected], observations[selected], masks[selected] | |
| render = dr.texture(texture, uv, uv_dr)[0] | |
| loss = torch.nn.functional.l1_loss(render[mask], observation[mask]) | |
| if lambda_tv > 0: | |
| loss += lambda_tv * tv_loss(texture) | |
| loss.backward() | |
| optimizer.step() | |
| # annealing | |
| optimizer.param_groups[0]['lr'] = cosine_anealing(optimizer, step, total_steps, 1e-2, 1e-5) | |
| pbar.set_postfix({'loss': loss.item()}) | |
| pbar.update() | |
| texture = np.clip(texture[0].flip(0).detach().cpu().numpy() * 255, 0, 255).astype(np.uint8) | |
| mask = 1 - utils3d.torch.rasterize_triangle_faces( | |
| rastctx, (uvs * 2 - 1)[None], faces, texture_size, texture_size | |
| )['mask'][0].detach().cpu().numpy().astype(np.uint8) | |
| texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA) | |
| else: | |
| raise ValueError(f'Unknown mode: {mode}') | |
| return texture | |
| def to_glb( | |
| app_rep: Union[Strivec, Gaussian], | |
| mesh: MeshExtractResult, | |
| simplify: float = 0.95, | |
| fill_holes: bool = True, | |
| fill_holes_max_size: float = 0.04, | |
| texture_size: int = 1024, | |
| debug: bool = False, | |
| verbose: bool = True, | |
| ) -> trimesh.Trimesh: | |
| """ | |
| Convert a generated asset to a glb file. | |
| Args: | |
| app_rep (Union[Strivec, Gaussian]): Appearance representation. | |
| mesh (MeshExtractResult): Extracted mesh. | |
| simplify (float): Ratio of faces to remove in simplification. | |
| fill_holes (bool): Whether to fill holes in the mesh. | |
| fill_holes_max_size (float): Maximum area of a hole to fill. | |
| texture_size (int): Size of the texture. | |
| debug (bool): Whether to print debug information. | |
| verbose (bool): Whether to print progress. | |
| """ | |
| vertices = mesh.vertices.cpu().numpy() | |
| faces = mesh.faces.cpu().numpy() | |
| # mesh postprocess | |
| vertices, faces = postprocess_mesh( | |
| vertices, faces, | |
| simplify=simplify > 0, | |
| simplify_ratio=simplify, | |
| fill_holes=fill_holes, | |
| fill_holes_max_hole_size=fill_holes_max_size, | |
| fill_holes_max_hole_nbe=int(250 * np.sqrt(1-simplify)), | |
| fill_holes_resolution=1024, | |
| fill_holes_num_views=1000, | |
| debug=debug, | |
| verbose=verbose, | |
| ) | |
| # parametrize mesh | |
| vertices, faces, uvs = parametrize_mesh(vertices, faces) | |
| # bake texture | |
| observations, extrinsics, intrinsics = render_multiview(app_rep, resolution=1024, nviews=100) | |
| masks = [np.any(observation > 0, axis=-1) for observation in observations] | |
| extrinsics = [extrinsics[i].cpu().numpy() for i in range(len(extrinsics))] | |
| intrinsics = [intrinsics[i].cpu().numpy() for i in range(len(intrinsics))] | |
| texture = bake_texture( | |
| vertices, faces, uvs, | |
| observations, masks, extrinsics, intrinsics, | |
| texture_size=texture_size, mode='opt', | |
| lambda_tv=0.01, | |
| verbose=verbose | |
| ) | |
| texture = Image.fromarray(texture) | |
| # rotate mesh (from z-up to y-up) | |
| vertices = vertices @ np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) | |
| material = trimesh.visual.material.PBRMaterial( | |
| roughnessFactor=1.0, | |
| baseColorTexture=texture, | |
| baseColorFactor=np.array([255, 255, 255, 255], dtype=np.uint8) | |
| ) | |
| mesh = trimesh.Trimesh(vertices, faces, visual=trimesh.visual.TextureVisuals(uv=uvs, material=material)) | |
| return mesh | |
| def simplify_gs( | |
| gs: Gaussian, | |
| simplify: float = 0.95, | |
| verbose: bool = True, | |
| ): | |
| """ | |
| Simplify 3D Gaussians | |
| NOTE: this function is not used in the current implementation for the unsatisfactory performance. | |
| Args: | |
| gs (Gaussian): 3D Gaussian. | |
| simplify (float): Ratio of Gaussians to remove in simplification. | |
| """ | |
| if simplify <= 0: | |
| return gs | |
| # simplify | |
| observations, extrinsics, intrinsics = render_multiview(gs, resolution=1024, nviews=100) | |
| observations = [torch.tensor(obs / 255.0).float().cuda().permute(2, 0, 1) for obs in observations] | |
| # Following https://arxiv.org/pdf/2411.06019 | |
| renderer = GaussianRenderer({ | |
| "resolution": 1024, | |
| "near": 0.8, | |
| "far": 1.6, | |
| "ssaa": 1, | |
| "bg_color": (0,0,0), | |
| }) | |
| new_gs = Gaussian(**gs.init_params) | |
| new_gs._features_dc = gs._features_dc.clone() | |
| new_gs._features_rest = gs._features_rest.clone() if gs._features_rest is not None else None | |
| new_gs._opacity = torch.nn.Parameter(gs._opacity.clone()) | |
| new_gs._rotation = torch.nn.Parameter(gs._rotation.clone()) | |
| new_gs._scaling = torch.nn.Parameter(gs._scaling.clone()) | |
| new_gs._xyz = torch.nn.Parameter(gs._xyz.clone()) | |
| start_lr = [1e-4, 1e-3, 5e-3, 0.025] | |
| end_lr = [1e-6, 1e-5, 5e-5, 0.00025] | |
| optimizer = torch.optim.Adam([ | |
| {"params": new_gs._xyz, "lr": start_lr[0]}, | |
| {"params": new_gs._rotation, "lr": start_lr[1]}, | |
| {"params": new_gs._scaling, "lr": start_lr[2]}, | |
| {"params": new_gs._opacity, "lr": start_lr[3]}, | |
| ], lr=start_lr[0]) | |
| def exp_anealing(optimizer, step, total_steps, start_lr, end_lr): | |
| return start_lr * (end_lr / start_lr) ** (step / total_steps) | |
| def cosine_anealing(optimizer, step, total_steps, start_lr, end_lr): | |
| return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps)) | |
| _zeta = new_gs.get_opacity.clone().detach().squeeze() | |
| _lambda = torch.zeros_like(_zeta) | |
| _delta = 1e-7 | |
| _interval = 10 | |
| num_target = int((1 - simplify) * _zeta.shape[0]) | |
| with tqdm(total=2500, disable=not verbose, desc='Simplifying Gaussian') as pbar: | |
| for i in range(2500): | |
| # prune | |
| if i % 100 == 0: | |
| mask = new_gs.get_opacity.squeeze() > 0.05 | |
| mask = torch.nonzero(mask).squeeze() | |
| new_gs._xyz = torch.nn.Parameter(new_gs._xyz[mask]) | |
| new_gs._rotation = torch.nn.Parameter(new_gs._rotation[mask]) | |
| new_gs._scaling = torch.nn.Parameter(new_gs._scaling[mask]) | |
| new_gs._opacity = torch.nn.Parameter(new_gs._opacity[mask]) | |
| new_gs._features_dc = new_gs._features_dc[mask] | |
| new_gs._features_rest = new_gs._features_rest[mask] if new_gs._features_rest is not None else None | |
| _zeta = _zeta[mask] | |
| _lambda = _lambda[mask] | |
| # update optimizer state | |
| for param_group, new_param in zip(optimizer.param_groups, [new_gs._xyz, new_gs._rotation, new_gs._scaling, new_gs._opacity]): | |
| stored_state = optimizer.state[param_group['params'][0]] | |
| if 'exp_avg' in stored_state: | |
| stored_state['exp_avg'] = stored_state['exp_avg'][mask] | |
| stored_state['exp_avg_sq'] = stored_state['exp_avg_sq'][mask] | |
| del optimizer.state[param_group['params'][0]] | |
| param_group['params'][0] = new_param | |
| optimizer.state[param_group['params'][0]] = stored_state | |
| opacity = new_gs.get_opacity.squeeze() | |
| # sparisfy | |
| if i % _interval == 0: | |
| _zeta = _lambda + opacity.detach() | |
| if opacity.shape[0] > num_target: | |
| index = _zeta.topk(num_target)[1] | |
| _m = torch.ones_like(_zeta, dtype=torch.bool) | |
| _m[index] = 0 | |
| _zeta[_m] = 0 | |
| _lambda = _lambda + opacity.detach() - _zeta | |
| # sample a random view | |
| view_idx = np.random.randint(len(observations)) | |
| observation = observations[view_idx] | |
| extrinsic = extrinsics[view_idx] | |
| intrinsic = intrinsics[view_idx] | |
| color = renderer.render(new_gs, extrinsic, intrinsic)['color'] | |
| rgb_loss = torch.nn.functional.l1_loss(color, observation) | |
| loss = rgb_loss + \ | |
| _delta * torch.sum(torch.pow(_lambda + opacity - _zeta, 2)) | |
| optimizer.zero_grad() | |
| loss.backward() | |
| optimizer.step() | |
| # update lr | |
| for j in range(len(optimizer.param_groups)): | |
| optimizer.param_groups[j]['lr'] = cosine_anealing(optimizer, i, 2500, start_lr[j], end_lr[j]) | |
| pbar.set_postfix({'loss': rgb_loss.item(), 'num': opacity.shape[0], 'lambda': _lambda.mean().item()}) | |
| pbar.update() | |
| new_gs._xyz = new_gs._xyz.data | |
| new_gs._rotation = new_gs._rotation.data | |
| new_gs._scaling = new_gs._scaling.data | |
| new_gs._opacity = new_gs._opacity.data | |
| return new_gs | |