|
import os |
|
import cv2 |
|
import tempfile |
|
from pathlib import Path |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image, ImageEnhance, ImageFilter |
|
from modelscope.outputs import OutputKeys |
|
from modelscope.pipelines import pipeline |
|
from modelscope.utils.constant import Tasks |
|
|
|
|
|
img_colorization = pipeline( |
|
Tasks.image_colorization, |
|
model="iic/cv_ddcolor_image-colorization" |
|
) |
|
|
|
def colorize_image(img_path: str) -> str: |
|
""" |
|
Reads a B&W image from disk, runs the colorization model, |
|
writes the colorized result to a temp file, and returns its path. |
|
""" |
|
image = cv2.imread(str(img_path)) |
|
output = img_colorization(image[..., ::-1]) |
|
result = output[OutputKeys.OUTPUT_IMG].astype(np.uint8) |
|
|
|
temp_dir = tempfile.mkdtemp() |
|
out_path = os.path.join(temp_dir, "colorized.png") |
|
cv2.imwrite(out_path, result) |
|
return out_path |
|
|
|
def enhance_image( |
|
img_path: str, |
|
brightness: float = 1.0, |
|
contrast: float = 1.0, |
|
edge_enhance: bool = False |
|
) -> str: |
|
""" |
|
Opens a colorized image from disk, applies brightness, contrast, |
|
and optional edge enhancement, saves to a temp file, and returns its path. |
|
""" |
|
image = Image.open(img_path) |
|
|
|
|
|
image = ImageEnhance.Brightness(image).enhance(brightness) |
|
|
|
image = ImageEnhance.Contrast(image).enhance(contrast) |
|
|
|
if edge_enhance: |
|
image = image.filter(ImageFilter.EDGE_ENHANCE) |
|
|
|
temp_dir = tempfile.mkdtemp() |
|
enhanced_path = os.path.join(temp_dir, "enhanced.png") |
|
image.save(enhanced_path) |
|
return enhanced_path |
|
|
|
def process_image( |
|
img_path: str, |
|
brightness: float, |
|
contrast: float, |
|
edge_enhance: bool, |
|
output_format: str |
|
): |
|
""" |
|
1) Colorizes the uploaded B&W image. |
|
2) Applies the chosen brightness/contrast/edge-enhancement. |
|
3) Re‐saves in the user’s chosen format (PNG/JPEG/TIFF). |
|
Returns: |
|
- A list [original_path, final_path] for side-by-side display. |
|
- The final image’s file path for download. |
|
""" |
|
|
|
colorized_path = colorize_image(img_path) |
|
|
|
enhanced_path = enhance_image(colorized_path, brightness, contrast, edge_enhance) |
|
|
|
img = Image.open(enhanced_path) |
|
temp_dir = tempfile.mkdtemp() |
|
filename = f"colorized_image.{output_format.lower()}" |
|
output_path = os.path.join(temp_dir, filename) |
|
img.save(output_path, format=output_format.upper()) |
|
|
|
|
|
return ([img_path, enhanced_path], output_path) |
|
|
|
|
|
TITLE = "🌈 Color Restorization Model" |
|
DESCRIPTION = "Upload a black & white photo to restore it in color using a deep learning model." |
|
|
|
|
|
with gr.Blocks(title=TITLE) as app: |
|
gr.Markdown(f"## {TITLE}") |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image( |
|
type="filepath", |
|
label="Upload B&W Image", |
|
tool="editor" |
|
) |
|
brightness_slider = gr.Slider( |
|
minimum=0.5, maximum=2.0, value=1.0, |
|
label="Brightness" |
|
) |
|
contrast_slider = gr.Slider( |
|
minimum=0.5, maximum=2.0, value=1.0, |
|
label="Contrast" |
|
) |
|
edge_enhance_checkbox = gr.Checkbox( |
|
label="Apply Edge Enhancement" |
|
) |
|
output_format_dropdown = gr.Dropdown( |
|
choices=["PNG", "JPEG", "TIFF"], |
|
value="PNG", |
|
label="Output Format" |
|
) |
|
submit_btn = gr.Button("Colorize") |
|
|
|
with gr.Column(): |
|
comparison_gallery = gr.Gallery( |
|
label="Original vs Colorized", |
|
columns=2, |
|
height="auto" |
|
) |
|
download_btn = gr.File(label="Download Colorized Image") |
|
|
|
submit_btn.click( |
|
fn=process_image, |
|
inputs=[ |
|
input_image, |
|
brightness_slider, |
|
contrast_slider, |
|
edge_enhance_checkbox, |
|
output_format_dropdown |
|
], |
|
outputs=[comparison_gallery, download_btn] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
port = int(os.environ.get("PORT", 7860)) |
|
app.queue().launch(server_name="0.0.0.0", server_port=port) |
|
|