Spaces:
Running
Running
Muyao Niu
commited on
Commit
·
0bdcd3e
1
Parent(s):
700a364
Update README.md
Browse files
README.md
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
<h1>
|
7 |
MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model
|
8 |
</h1>
|
9 |
-
<a href=''><img src='https://img.shields.io/badge/ArXiv-PDF-red'></a> <a href='https://myniuuu.github.io/MOFA_Video'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
|
10 |
<div>
|
11 |
<a href='https://myniuuu.github.io/' target='_blank'>Muyao Niu</a> <sup>1,2</sup>
|
12 |
<a href='https://vinthony.github.io/academic/' target='_blank'>Xiaodong Cun</a><sup>2,*</sup>
|
@@ -20,6 +20,12 @@
|
|
20 |
</div>
|
21 |
</div>
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Introduction
|
25 |
|
@@ -35,9 +41,8 @@ We introduce MOFA-Video, a method designed to adapt motions from different domai
|
|
35 |
|
36 |
During the training stage, we generate sparse control signals through sparse motion sampling and then train different MOFA-Adapters to generate video via pre-trained SVD. During the inference stage, different MOFA-Adapters can be combined to jointly control the frozen SVD.
|
37 |
|
38 |
-
---
|
39 |
|
40 |
-
|
41 |
|
42 |
## 📰 **TODO**
|
43 |
- [ ] Gradio demo and checkpoints for trajectory-based image animation (By this weekend)
|
@@ -47,4 +52,4 @@ please check the gallery of our [project page](https://myniuuu.github.io/MOFA_Vi
|
|
47 |
|
48 |
|
49 |
## Acknowledgements
|
50 |
-
|
|
|
6 |
<h1>
|
7 |
MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model
|
8 |
</h1>
|
9 |
+
<a href=''><img src='https://img.shields.io/badge/ArXiv-PDF-red'></a> <a href='https://myniuuu.github.io/MOFA_Video'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://myniuuu.github.io/MOFA_Video'><img src='https://img.shields.io/badge/🤗 hugging_face-comming_soom-blue'></a>
|
10 |
<div>
|
11 |
<a href='https://myniuuu.github.io/' target='_blank'>Muyao Niu</a> <sup>1,2</sup>
|
12 |
<a href='https://vinthony.github.io/academic/' target='_blank'>Xiaodong Cun</a><sup>2,*</sup>
|
|
|
20 |
</div>
|
21 |
</div>
|
22 |
|
23 |
+
---
|
24 |
+
|
25 |
+
<div align="center">
|
26 |
+
Check the gallery of our <a href='https://myniuuu.github.io/MOFA_Video' target='_blank'>project page</a> for many visual results!
|
27 |
+
</div>
|
28 |
+
|
29 |
|
30 |
## Introduction
|
31 |
|
|
|
41 |
|
42 |
During the training stage, we generate sparse control signals through sparse motion sampling and then train different MOFA-Adapters to generate video via pre-trained SVD. During the inference stage, different MOFA-Adapters can be combined to jointly control the frozen SVD.
|
43 |
|
|
|
44 |
|
45 |
+
|
46 |
|
47 |
## 📰 **TODO**
|
48 |
- [ ] Gradio demo and checkpoints for trajectory-based image animation (By this weekend)
|
|
|
52 |
|
53 |
|
54 |
## Acknowledgements
|
55 |
+
Our Gradio codes are based on the early release of [DragNUWA](https://arxiv.org/abs/2308.08089). Our training codes are based on [Diffusers](https://github.com/huggingface/diffusers) and [SVD_Xtend](https://github.com/pixeli99/SVD_Xtend). We appreciate the code release of these projects.
|