Muyao Niu commited on
Commit
2d3882a
·
1 Parent(s): 1685bbc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -12
README.md CHANGED
@@ -1,14 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- title: MOFA Demo
3
- emoji: 🐠
4
- colorFrom: blue
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 4.32.2
8
- app_file: app.py
9
- pinned: false
10
- ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
- # MOFA-Video
14
- Official Pytorch implementation for MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model.
 
 
 
 
 
 
 
 
 
1
+ # MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model.
2
+
3
+ [Muyao Niu](https://myniuuu.github.io/),
4
+ [Xiaodong Cun](https://vinthony.github.io/academic/),
5
+ [Xintao Wang](https://xinntao.github.io/),
6
+ [Yong Zhang](https://yzhang2016.github.io/),
7
+ [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en),
8
+ [Yinqiang Zheng](https://scholar.google.com/citations?user=JD-5DKcAAAAJ&hl=en)
9
+
10
+ [![Project page](https://img.shields.io/badge/Project-Page-brightgreen)](https://myniuuu.github.io/MOFA_Video)
11
+
12
+
13
+ ## Introduction
14
+ <p align="center">
15
+ <img src="assets/figures/project-mofa.png">
16
+ </p>
17
+ We introduce MOFA-Video, a method designed to adapt motions from different domains to the frozen Video Diffusion Model. By employing <u>sparse-to-dense (S2D) motion generation</u> and <u>flow-based motion adaptation</u>, MOFA-Video can effectively animate a single image using various types of control signals, including trajectories, keypoint sequences, AND their combinations.
18
+ <p align="center">
19
+ <img src="assets/figures/pipeline.png">
20
+ </p>
21
+ During the training stage, we generate sparse control signals through sparse motion sampling and then train different MOFA-Adapters to generate video via pre-trained SVD. During the inference stage, different MOFA-Adapters can be combined to jointly control the frozen SVD.
22
+
23
  ---
 
 
 
 
 
 
 
 
 
24
 
25
+ please check the gallery of our [project page](https://myniuuu.github.io/MOFA_Video) for many visual results!
26
+
27
+ ## 📰 **TODO**
28
+ - [ ] Gradio demo and checkpoints for trajectory-based image animation (By this weekend)
29
+ - [ ] Inference scripts and checkpoints for keypoint-based facial image animation
30
+ - [ ] inference Gradio demo for hybrid image animation
31
+ - [ ] Training codes
32
+
33
+
34
+ # Acknowledgements
35
+ We appreciate the Gradio code of [DragNUWA](https://arxiv.org/abs/2308.08089).