File size: 6,386 Bytes
5fa4369
05b8101
10e9b7d
61c2ff2
4097d7c
6a52f23
86df5d9
 
61c2ff2
1381703
edbeeac
0b67c77
edbeeac
c27f94c
 
 
3635d36
abf0257
8fd0023
86df5d9
 
4fcc621
86df5d9
 
 
4fcc621
86df5d9
 
84f178b
86df5d9
 
 
04dd10e
0b67c77
4fcc621
86df5d9
 
 
4fcc621
04dd10e
 
 
4fcc621
86df5d9
 
 
 
 
04dd10e
86df5d9
 
4fcc621
86df5d9
 
4fcc621
 
86df5d9
 
4fcc621
86df5d9
 
 
4fcc621
86df5d9
 
 
7cfb3a2
 
86df5d9
46eabca
a54e373
edbeeac
86df5d9
4fcc621
86df5d9
 
4fcc621
86df5d9
4fcc621
86df5d9
 
932b4d5
7cfb3a2
060e212
7cfb3a2
0b67c77
7cfb3a2
 
 
84f178b
61c2ff2
84f178b
 
4856d2b
7cfb3a2
 
 
 
61c2ff2
6a52f23
7cfb3a2
 
 
6a52f23
7cfb3a2
bc758d9
7cfb3a2
 
84f178b
7cfb3a2
ef65c0f
7cfb3a2
 
6a52f23
 
edbeeac
 
 
6a52f23
84f178b
 
 
932b4d5
84f178b
61c2ff2
7cfb3a2
84f178b
61c2ff2
c27f94c
84f178b
 
c27f94c
 
 
9e16e60
7cfb3a2
 
 
 
 
 
84f178b
7cfb3a2
 
9e16e60
84f178b
9e16e60
84f178b
9ccf47b
86df5d9
9e16e60
 
46eabca
c27f94c
84f178b
 
 
46eabca
7cfb3a2
 
61c2ff2
84f178b
 
9e16e60
7cfb3a2
9e16e60
 
a11972f
7cfb3a2
61c2ff2
6a52f23
cfef47f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173


import os
import gradio as gr
import requests
import pandas as pd

import google.generativeai as genai
from smolagents import CodeAgent, DuckDuckGoSearchTool

# System prompt used by the agent
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:".
Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
If you're asked for a number, don’t use commas or units like $ or %, unless specified.
If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise."""

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Generation result wrapper to match smolagents expectations
class GenerationResult:
    def __init__(self, content, input_tokens=0, output_tokens=0, token_usage=None):
        self.content = content
        self.input_tokens = input_tokens
        self.output_tokens = output_tokens
        self.token_usage = token_usage or {}

# Gemini model wrapper
class GeminiFlashModel:
    def __init__(self, model_id="gemini-1.5-flash", api_key=None):
        genai.configure(api_key=api_key or os.getenv("GEMINI_API_KEY"))
        self.model = genai.GenerativeModel(model_id)
        self.system_prompt = SYSTEM_PROMPT

    def generate(self, messages, **kwargs):
        if not isinstance(messages, list) or not all(isinstance(m, dict) for m in messages):
            raise TypeError("Expected 'messages' to be a list of dicts")

        # Ensure system prompt is first message
        if not any(m.get("role") == "system" for m in messages):
            messages = [{"role": "system", "content": self.system_prompt}] + messages

        # Build prompt text by concatenating messages with roles
        prompt = ""
        for m in messages:
            role = m["role"].capitalize()
            content = m["content"]
            prompt += f"{role}: {content}\n"

        try:
            response = self.model.generate_content(prompt)
            # Always wrap the result in GenerationResult
            return GenerationResult(
                content=response.text.strip(),
                input_tokens=0,   # Could add token counts here if available
                output_tokens=0,
            )
        except Exception as e:
            # Wrap errors too, so agent doesn't fail
            return GenerationResult(
                content=f"GENERATION ERROR: {e}",
                input_tokens=0,
                output_tokens=0,
            )

# Agent wrapper
class MyAgent:
    def __init__(self):
        self.model = GeminiFlashModel(model_id="gemini-1.5-flash")
        self.agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=self.model)

    def __call__(self, question: str) -> str:
        result = self.agent.run(question)
        # result can be GenerationResult or maybe dict or str - normalize:
        if hasattr(result, "content"):
            return result.content
        if isinstance(result, dict):
            return result.get("content", str(result))
        return str(result)

# Main evaluation function
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please login to Hugging Face.", None

    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"

    try:
        agent = MyAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []

    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })

    if not answers_payload:
        return "Agent did not return any answers.", pd.DataFrame(results_log)

    submission_data = {
        "username": profile.username.strip(),
        "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
        "answers": answers_payload
    }

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission failed: {e}", pd.DataFrame(results_log)

# Gradio UI setup
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""
    **Instructions:**
    1. Clone this space and configure your Gemini API key.
    2. Log in to Hugging Face.
    3. Run your agent on evaluation tasks and submit answers.
    """)

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Results", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("🔧 App starting...")
    demo.launch(debug=True, share=False)