File size: 5,349 Bytes
5fa4369
05b8101
10e9b7d
61c2ff2
4097d7c
6a52f23
7cfb3a2
c27f94c
61c2ff2
1381703
0b67c77
 
c27f94c
 
 
 
3635d36
abf0257
8fd0023
84f178b
 
c27f94c
 
84f178b
c27f94c
84f178b
c27f94c
 
0b67c77
46eabca
c27f94c
46eabca
 
c27f94c
46eabca
84f178b
46eabca
84f178b
c27f94c
 
 
 
 
 
9ccf47b
84f178b
7cfb3a2
 
c27f94c
46eabca
a54e373
7cfb3a2
46eabca
6a52f23
7cfb3a2
 
060e212
7cfb3a2
0b67c77
7cfb3a2
 
 
84f178b
61c2ff2
84f178b
 
4856d2b
7cfb3a2
 
 
 
61c2ff2
6a52f23
7cfb3a2
 
 
6a52f23
7cfb3a2
bc758d9
7cfb3a2
 
84f178b
7cfb3a2
ef65c0f
7cfb3a2
 
6a52f23
 
0b67c77
7cfb3a2
4856d2b
6a52f23
84f178b
 
 
 
 
61c2ff2
7cfb3a2
84f178b
61c2ff2
c27f94c
84f178b
 
c27f94c
 
 
9e16e60
7cfb3a2
 
 
 
 
 
84f178b
7cfb3a2
 
9e16e60
84f178b
9e16e60
84f178b
9ccf47b
c27f94c
9e16e60
 
46eabca
c27f94c
84f178b
 
 
46eabca
7cfb3a2
 
61c2ff2
84f178b
 
9e16e60
7cfb3a2
9e16e60
 
84f178b
7cfb3a2
61c2ff2
6a52f23
cfef47f
c27f94c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147


import os
import gradio as gr
import requests
import pandas as pd

import google.generativeai as genai
from smolagents import CodeAgent, DuckDuckGoSearchTool

# Define the system prompt
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:".
Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
If you're asked for a number, don’t use commas or units like $ or %, unless specified.
If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise."""

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Gemini model wrapper (lightweight, no smolagents.model.base)
class GeminiFlashModel:
    def __init__(self, model_name="gemini-1.5-flash", api_key=None):
        self.model_name = model_name
        self.api_key = api_key or os.getenv("GEMINI_API_KEY")
        if not self.api_key:
            raise ValueError("GEMINI_API_KEY is not set.")
        genai.configure(api_key=self.api_key)
        self.model = genai.GenerativeModel(model_name)

    def generate(self, messages, stop_sequences=None, **kwargs):
        # Insert system prompt if missing
        if isinstance(messages, list):
            if not any(m["role"] == "system" for m in messages):
                messages = [{"role": "system", "content": SYSTEM_PROMPT}] + messages
        else:
            raise TypeError("Expected 'messages' to be a list of dicts.")

        prompt = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in messages)

        try:
            response = self.model.generate_content(prompt)
            return response.text.strip()
        except Exception as e:
            return f"GENERATION ERROR: {e}"

# Agent using Gemini
class MyAgent:
    def __init__(self):
        self.model = GeminiFlashModel(model_name="gemini-1.5-flash")
        self.agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=self.model)

    def __call__(self, question: str) -> str:
        return self.agent.run(question)

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please login to Hugging Face.", None

    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"

    try:
        agent = MyAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []

    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })

    if not answers_payload:
        return "Agent did not return any answers.", pd.DataFrame(results_log)

    submission_data = {
        "username": profile.username.strip(),
        "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
        "answers": answers_payload
    }

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission failed: {e}", pd.DataFrame(results_log)

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""
    **Instructions:**
    1. Clone this space and configure your Gemini API key.
    2. Log in to Hugging Face.
    3. Run your agent on evaluation tasks and submit answers.
    """)

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Results", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("🔧 App starting...")
    demo.launch(debug=True, share=False)