dlaima's picture
Update app.py
86df5d9 verified
raw
history blame
6.47 kB
import os
import gradio as gr
import requests
import pandas as pd
import google.generativeai as genai
from smolagents import CodeAgent, DuckDuckGoSearchTool
# System prompt used by the agent
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:".
Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
If you're asked for a number, don’t use commas or units like $ or %, unless specified.
If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise."""
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Generation result wrapper to match smolagents expectations
class GenerationResult:
def __init__(self, content, token_usage=None, input_tokens=0, output_tokens=0):
self.content = content
self.token_usage = token_usage or {}
self.input_tokens = input_tokens
self.output_tokens = output_tokens
# Gemini model wrapper
class GeminiFlashModel:
def __init__(self, model_id="gemini-1.5-flash", api_key=None):
genai.configure(api_key=api_key or os.getenv("GEMINI_API_KEY"))
self.model = genai.GenerativeModel(model_id)
self.system_prompt = SYSTEM_PROMPT
# Accept stop_sequences explicitly to avoid unexpected kwarg errors
def generate(self, messages, stop_sequences=None, **kwargs):
if not isinstance(messages, list) or not all(isinstance(m, dict) for m in messages):
raise TypeError("Expected 'messages' to be a list of dicts")
if not any(m.get("role") == "system" for m in messages):
messages = [{"role": "system", "content": self.system_prompt}] + messages
prompt = ""
for m in messages:
role = m["role"].capitalize()
content = m["content"]
prompt += f"{role}: {content}\n"
try:
# Note: genai.GenerativeModel.generate_content may not support stop_sequences
response = self.model.generate_content(prompt)
return GenerationResult(
content=response.text.strip(),
token_usage={}, # you can extend if API provides token info
input_tokens=0,
output_tokens=0
)
except Exception as e:
return GenerationResult(
content=f"GENERATION ERROR: {e}",
token_usage={},
input_tokens=0,
output_tokens=0
)
# Agent wrapper
class MyAgent:
def __init__(self):
self.model = GeminiFlashModel(model_id="gemini-1.5-flash")
self.agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=self.model)
def __call__(self, question: str) -> str:
# The agent.run expects a string answer
result = self.agent.run(question)
# If result is GenerationResult or dict-like, convert to string
if hasattr(result, "content"):
return result.content
elif isinstance(result, dict):
return result.get("content", str(result))
else:
return str(result)
# Main evaluation function
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please login to Hugging Face.", None
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
try:
agent = MyAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
return "Agent did not return any answers.", pd.DataFrame(results_log)
submission_data = {
"username": profile.username.strip(),
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission failed: {e}", pd.DataFrame(results_log)
# Gradio UI setup
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space and configure your Gemini API key.
2. Log in to Hugging Face.
3. Run your agent on evaluation tasks and submit answers.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Results", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("🔧 App starting...")
demo.launch(debug=True, share=False)