dlaima's picture
Update app.py
932b4d5 verified
raw
history blame
4.96 kB
import os
import gradio as gr
import requests
import pandas as pd
from openai import OpenAI
from smolagents import CodeAgent, DuckDuckGoSearchTool
# System prompt used by the agent
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:".
Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
If you're asked for a number, don’t use commas or units like $ or %, unless specified.
If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise."""
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class GeminiFlashModel:
def __init__(self, model_id="gemini-1.5-flash"):
self.client = OpenAI(
api_key=os.getenv("GEMINI_API_KEY"),
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
)
self.model_id = model_id
self.system_prompt = SYSTEM_PROMPT
def generate(self, messages):
# Ensure system prompt is present
if not any(m.get("role") == "system" for m in messages):
messages = [{"role": "system", "content": self.system_prompt}] + messages
response = self.client.chat.completions.create(
model=self.model_id,
messages=messages
)
# Return the generated content string directly
return response.choices[0].message.content
class MyAgent:
def __init__(self):
self.model = GeminiFlashModel()
self.agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=self.model)
def __call__(self, question: str) -> str:
return self.agent.run(question)
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please login to Hugging Face.", None
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
try:
agent = MyAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
return "Agent did not return any answers.", pd.DataFrame(results_log)
submission_data = {
"username": profile.username.strip(),
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission failed: {e}", pd.DataFrame(results_log)
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space and configure your Gemini API key.
2. Log in to Hugging Face.
3. Run your agent on evaluation tasks and submit answers.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Results", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("🔧 App starting...")
demo.launch(debug=True, share=False)