Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import pandas as pd | |
import gradio as gr | |
from smolagents import ToolCallingAgent, OpenAIServerModel | |
from audio_transcriber import AudioTranscriptionTool | |
from image_analyzer import ImageAnalysisTool | |
from wikipedia_searcher import WikipediaSearcher | |
DEFAULT_API_URL = "https://gaia-benchmark.com/api" | |
class GaiaAgent: | |
def __init__(self): | |
tools = [ | |
AudioTranscriptionTool(), | |
ImageAnalysisTool(), | |
WikipediaSearcher() | |
] | |
model_id = os.getenv("OPENAI_MODEL_ID", "gpt-3.5-turbo") | |
self.agent = ToolCallingAgent( | |
model=OpenAIServerModel(model_id=model_id), | |
tools=tools | |
) | |
def __call__(self, query: str) -> str: | |
result = self.agent.run(query) | |
return result.get("output", "No output returned") | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = profile.username | |
if isinstance(username, list): | |
username = username[0] | |
username = username.strip() | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
try: | |
agent = GaiaAgent() | |
except Exception as e: | |
print(f"Error initializing agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(f"Agent code URL: {agent_code}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
if not task_id: | |
continue | |
question_text = item.get("question", "") | |
file_url = item.get("file_url") | |
local_file_path = None | |
if file_url: | |
try: | |
ext = file_url.split(".")[-1].lower() | |
if ext in ["mp3", "wav", "jpeg", "jpg", "png"]: | |
local_file_path = f"./temp_{task_id}.{ext}" | |
with requests.get(file_url, stream=True) as r: | |
r.raise_for_status() | |
with open(local_file_path, "wb") as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
f.write(chunk) | |
print(f"Downloaded file for task {task_id} to {local_file_path}") | |
question_text += f"\n\nFile path: {local_file_path}" | |
except Exception as e: | |
print(f"Failed to download file for task {task_id}: {e}") | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": submitted_answer | |
}) | |
except Exception as e: | |
error_msg = f"AGENT ERROR: {e}" | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": error_msg | |
}) | |
if local_file_path: | |
try: | |
os.remove(local_file_path) | |
except Exception: | |
pass | |
if not answers_payload: | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
submission_data = { | |
"username": username, | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
try: | |
detail = e.response.json().get("detail", e.response.text) | |
except Exception: | |
detail = e.response.text[:500] | |
return f"Submission Failed: {detail}", pd.DataFrame(results_log) | |
except requests.exceptions.Timeout: | |
return "Submission Failed: The request timed out.", pd.DataFrame(results_log) | |
except Exception as e: | |
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log) | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown(""" | |
**Instructions:** | |
1. Clone this space and define your agent and tools. | |
2. Log in to your Hugging Face account using the button below. | |
3. Click 'Run Evaluation & Submit All Answers' to test your agent and submit results. | |
""") | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
space_host = os.getenv("SPACE_HOST") | |
space_id = os.getenv("SPACE_ID") | |
if space_host: | |
print(f"✅ SPACE_HOST found: {space_host}") | |
print(f" Runtime URL should be: https://{space_host}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST not found.") | |
if space_id: | |
print(f"✅ SPACE_ID found: {space_id}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id}") | |
else: | |
print("ℹ️ SPACE_ID not found.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
demo.launch(debug=True, share=False) | |